Skip to main content
×
Home
    • Aa
    • Aa

Gate dielectric reliability and instability in GaN metal-insulator-semiconductor high-electron-mobility transistors for power electronics

  • Jesús A. del Alamo (a1), Alex Guo (a1) and Shireen Warnock (a1)
Abstract
Abstract

GaN field-effect transistors with impressive power switching characteristics have been demonstrated. Preventing their widespread field deployment are reliability and instability concerns. Some emanate from the use of a dielectric in the gate stack. Under typical operation, the gate dielectric comes periodically under intense electric field. This causes trapping and detrapping of electrons and introduces transient shifts in the threshold voltage, a phenomenon known as Bias-Temperature Instability (BTI). A high electric field also results in the formation of defects inside the dielectric. Over time, the defects accumulate and eventually result in the abrupt creation of a conducting path that shorts the dielectric and renders the device inoperable. This process, known as Time-Dependent Dielectric Breakdown (TDDB), often imposes a maximum lifetime for the FET technology. This article presents a methodology for the study of BTI and TDDB in insulated-gate GaN FETs. Our findings paint a picture of BTI and TDDB that in many respects is similar to that of Si transistors but with some unique characteristics. Understanding the physics and developing appropriate lifetime models is essential to enabling the deployment of this important new power electronics technology.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: alamo@mit.edu
Footnotes
Hide All

Contributing Editor: Don W. Shaw

This paper has been selected as an Invited Feature Paper.

Footnotes
References
Hide All
1. MorkocH.: Nitride Semiconductors and Devices, 1st ed. (Springer-Verlag Berlin Heidelberg, Weinheim, Germany, 1999).
2. NakamuraS.: Nobel lecture: Background story of the invention of efficient blue InGaN light emitting diodes. Rev. Mod. Phys. 87, 1139 (2015).
3. Asif KhanM., SkogmanR.A., Van HoveJ.M., OlsonD.T., and KuzniaJ.N.: Atomic layer epitaxy of GaN over sapphire using switched metalorganic chemical vapor deposition. Appl. Phys. Lett. 60, 1366 (1992).
4. ManfraM.J., WeimannN.G., HsuJ.W.P., PfeifferL.N., WestK.W., SyedS., StormerH.L., PanW., LangD.V., ChuS.N.G., KowachG., SergentA.M., CaissieJ., MolvarK.M., MahoneyL.J., and MolnarR.J.: High mobility AlGaN/GaN heterostructures grown by plasma-assisted molecular beam epitaxy on semi-insulating GaN templates prepared by hydride vapor phase epitaxy. J. Appl. Phys. 92, 338 (2002).
5. Asif KhanM., BhattaraiA., KuzniaJ.N., and OlsonD.T.: High electron mobility transistor based on a GaN–Al x Ga1−x N heterojunction. Appl. Phys. Lett. 63, 1214 (1993).
6. PengellyR.S., WoodS.M., MilliganJ.W., SheppardS.T., and PribbleW.L.: A review of GaN on SiC high electron-mobility power transistors and MMICs. IEEE Trans. Microwave Theory Tech. 60, 1764 (2012).
7. LidowA., StrydomJ., de RooijM., and MaY.: GaN Transistors for Efficient Power Conversion, 1st ed. (Power Conversion Publications, El Segundo, California, 2012).
8. Van HoveM., BoulayS., BahlS.R., StoffelsS., KangX., WellekensD., GeensK., DelabieA., and DecoutereS.: CMOS process-compatible high-power low-leakage AlGaN/GaN MISHEMT on silicon. IEEE Electron Device Lett. 33, 667 (2012).
9. ThenH.W., ChowL.A., DasguptaS., GardnerS., RadosavljevicM., RaoV.R., SungS.H., YangG., and FischerP.: High-K gate dielectric depletion-mode and enhancement-mode GaN MOS-HEMTs for improved off-state leakage and DIBL for power electronics and RF applications. In IEEE International Electron Devices Meeting (IEEE, Washington D.C., 2015); pp. 1623.
10. DeboyG., TreuM., HaeberlenO., and NeumayrD.: Si, SIC and GaN power devices: An unbiased view on key performance indicators. In IEEE International Electron Devices Meeting (IEEE, San Francisco, California 2016); pp. 2022.
11. ZanoniE., MeneghiniM., ChiniA., MarconD., and MeneghessoG.: AlGaN/GaN-based HEMTs failure physics and reliability: Mechanisms affecting gate edge and Schottky junction. IEEE Trans. Electron Devices 60, 3119 (2013).
12. del AlamoJ.A. and JohJ.: GaN HEMT reliability. Microelectron. Reliab. 49, 1200 (2009).
13. MarconD., ViaeneJ., FaviaP., BenderH., KangX., LenciS., StoffelsS., and DecoutereS.: Reliability of AlGaN/GaN HEMTs: Permanent leakage current increase and output current drop. Microelectron. Reliab. 52, 2188 (2012).
14. OhkiT., KikkawaT., InoueY., KanamuraM., OkamotoN., MakiyamaK., ImanishiK., ShigematsuH., JoshinK., and HaraN.: Reliability of GaN HEMTs: Current status and future technology. In IEEE International Reliability Physics Symposium (IEEE, Montreal, Canada 2009); pp. 6170.
15. ZafarS., KimY., NarayananV., CabralC., ParuchuriV., DorisB., StathisJ., CallegariA., and ChudzikM.: A comparative study of NBTI and PBTI (charge trapping) in SiO2/HfO2 stacks with FUSI, TiN, Re gates. In International Symposium on VLSI Technology (IEEE, Honolulu, Hawaii, 2006); pp. 2325.
16. StathisJ.H. and ZafarS.: The negative bias temperature instability in MOS devices: A review. Microelectron. Reliab. 46, 270 (2006).
17. LaggerP., OstermaierC., PobegenG., and PoganyD.: Towards understanding the origin of threshold voltage instability of AlGaN/GaN MIS-HEMTs. In IEEE International Electron Devices Meeting (IEEE, San Francisco, California, 2012); pp. 1321.
18. SvenssonC. and ShumkaA.: Time dependent breakdown in silicon dioxide films. Int. J. Electron. 38, 69 (1975).
19. RibesG., MitardJ., DenaisM., BruyereS., MonsieurF., ParthasarathyC., VincentE., and GhibaudoG.: Review on high-k dielectrics reliability issues. IEEE Trans. Device Mater. Reliab. 5, 5 (2005).
20. WuT-L., MarconD., ZahidM.B., Van HoveM., DecoutereS., and GroesenekenG.: Comprehensive investigation of on-state stress on D-mode AlGaN/GaN MIS-HEMTs. In IEEE International Reliability Physics Symposium (IEEE, Monterrey, California, 2013); pp. 3C5C.
21. AlamM.A., WeirB.E., and SilvermanP.J.: A study of soft and hard breakdown-part I: Analysis of statistical percolation conductance. IEEE Trans. Electron Devices 49, 232 (2002).
22. AlamM.A., WeirB.E., and SilvermanP.J.: A study of soft and hard breakdown-part II: Principles of area, thickness, and voltage scaling. IEEE Trans. Electron Devices 49, 239 (2002).
23. LiX., TungC.H., PeyK.L., and LoV.L.: The chemistry of gate dielectric breakdown. In IEEE International Electron Devices Meeting (IEEE, San Francisco California, 2008); pp. 14.
24. WarnockS. and del AlamoJ.A.: Stress and characterization strategies to assess oxide breakdown in high-voltage GaN field-effect transistors. In Compound Semiconductor Manufacturing Technology Conference (CS MANTECH, Scottsdale, Arizona, 2015); pp. 311314.
25. HuaM., LiuC., YangS., LiuS., FuK., DongZ., CaiY., ZhangB., and ChenK.J.: Characterization of leakage and reliability of SiN x gate dielectric by low-pressure chemical vapor deposition for GaN-based MIS-HEMTs. IEEE Trans. Electron Devices 62, 3215 (2015).
26. WarnockS. and del AlamoJ.A.: Progressive breakdown in high-voltage GaN MIS-HEMTs. In IEEE International Reliability Physics Symposium (IEEE, Pasadena, California, 2016); pp. 4A6A.
27. HuangX., LiuZ., LiQ., and LeeF.C.: Evaluation and application of 600 V GaN HEMT in cascode structure. IEEE Trans. Power Electron. 29, 2453 (2014).
28. MeneghiniM., RossettoI., De SantiC., RampazzoR., TajalliA., BarbatoA., RuzzarinM., BorgaM., CanatoE., ZanoniE., and MeneghessoG.: Reliability and failure analysis in power GaN-HEMTs: An overview. In IEEE International Reliability Physics Symposium (IEEE, Monterrey, California 2017); pp. 3B-2.13B-2.8.
29. BaligaB.J.: Gallium nitride devices for power electronic applications. Semicond. Sci. Technol. 28, 074011 (2013).
30. MarinoF.A., BisiD., MeneghiniM., VerzellesiG., ZanoniE., Van HoveM., YouS., DecoutereS., MarconD., StoffelsS., RonchiN., and MeneghessoG.: Analysis of off-state leakage mechanisms in GaN-based MIS-HEMTs: Experimental data and numerical simulation. Solid-State Electron. 113, 9 (2015).
31. MeneghiniM., RossettoI., HurkxF., SonskyJ., CroonJ.A., MeneghessoG., and ZanoniE.: Extensive investigation of time-dependent breakdown of GaN-HEMTs submitted to off-state stress. IEEE Trans. Electron Devices 62, 2549 (2015).
32. WoltersD.R. and van der SchootJ.J.: Dielectric breakdown in MOS devices, part I: Defect-related and intrinsic breakdown. Philips J. Res. 45, 115 (1985).
33. DemirtasS., JohJ., and del AlamoJ.A.: High voltage degradation of GaN high electron mobility transistors on silicon substrate. Microelectron. Reliab. 50, 758 (2010).
34. DegraeveR., KaueraufT., ChoM., ZahidM., RagnarssonL-A., BruncoD.P., KaczerB., RousselP., De GendtS., and GroesenekenG.: Degradation and breakdown of 0.9 nm EOT SiO/sub 2/ ALD HfO/sub 2/metal gate stacks under positive constant voltage stress. In IEEE International Electron Devices Meeting (IEEE, Washington, D.C., 2005); pp. 408411.
35. DegraeveR., KaczerB., and GroesenekenG.: Degradation and breakdown in thin oxide layers: Mechanisms, models and reliability prediction. Microelectron. Reliab. 39, 1445 (1999).
36. PalumboF., EizenbergM., and LombardoS.: General features of progressive breakdown in gate oxides: A compact model. In IEEE International Reliability Physics Symposium (2015); pp. 5A.1.15A.1.6.
37. WuE.Y., StathisJ.H., and HanL-K.: Ultra-thin oxide reliability for ULSI applications. Semicond. Sci. Technol. 15(5), 425 (2000).
38. BersukerG., ChowdhuryN., YoungC., HehD., MisraD., and ChoiR.: Progressive breakdown characteristics of high-k/metal gate stacks. In IEEE International Reliability Physics Symposium (IEEE, Phoenix, Arizona, 2007); pp. 4954.
39. GuoA. and del AlamoJ.A.: Positive-bias temperature instability (PBTI) of GaN MOSFETs. In IEEE International Reliability Physics Symposium (IEEE, Monterrey, California, 2015); pp. 6C.5.16C.5.7.
40. CrupiF., DegraeveR., GroesenekenG., NigamT., and MaesH.E.: On the properties of the gate and substrate current after soft breakdown in ultrathin oxide layers. IEEE Trans. Electron Devices 45, 2329 (1998).
41. SuneJ., WuE.Y., JiménezD., VollertsenR.P., and MirandaE.: Understanding soft and hard breakdown statistics, prevalence ratios and energy dissipation during breakdown runaway. In IEEE International Electron Devices Meeting (IEEE, Washington, D.C., 2001); pp. 117120.
42. WarnockS. and del AlamoJ.A.: OFF-state TDDB in high-voltage GaN MIS-HEMTs. In IEEE International Reliability Physics Symposium (2017); pp. 4B-3.14B-3.6.
43. JinD., JohJ., KrishnanS., TipirneniN., PendharkarS., and del AlamoJ.A.: Total current collapse in high-voltage GaN MIS-HEMTs induced by Zener trapping. In IEEE International Electron Devices Meeting (IEEE, Washington D.C., 2013); pp. 148151.
44. DemirtasS. and del AlamoJ.A.: Effect of trapping on the critical voltage for degradation in GaN high electron mobility transistors. In IEEE International Reliability Physics Symposium (IEEE, Anaheim, California, 2010); pp. 134138.
45. LaggerP., ReinerM., PoganyD., and OstermaierC.: Comprehensive study of the complex dynamics of forward bias-induced threshold voltage drifts in GaN based MIS-HEMTs by stress/recovery experiments. IEEE Trans. Electron Devices 61, 1022 (2014).
46. LaggerP., DonsaS., SpreitzerP., PobegenG., ReinerM., NaharashiH., MohamedJ., MosslacherH., PrechtlG., PoganyD., and OstermaierC.: Thermal activation of PBTI-related stress and recovery processes in GaN MIS-HEMTs using on-wafer heaters. In IEEE International Reliability Physics Symposium (IEEE, Monterrey, California, 2015); pp. 6C.2.16C.2.7.
47. StradiottoR., PobegenG., OstermaierC., and GrasserT.: On the fly characterization of charge trapping phenomena at GaN/dielectric and GaN/AlGaN/dielectric interfaces using impedance measurements. In IEEE Solid State Device Research Conference (IEEE, Sapporo, Japan, 2015); pp. 7275.
48. JinD. and del AlamoJ.A.: Methodology for the study of dynamic on-resistance in high-voltage GaN field-effect transistors. IEEE Trans. Electron Devices 60, 3190 (2013).
49. AlamM.A., BudeJ., and GhettiA.: Field acceleration for oxide breakdown—Can an accurate anode hole injection model resolve the E vs. 1/E controversy? In IEEE International Reliability Physics Symposium (IEEE, San Jose, California, 2000); pp. 2126.
50. ConleyJ.F., LenahanP.M., EvansH.L., LowryR.K., and MorthorstT.J.: Observation and electronic characterization of two E′ center charge traps in conventionally processed thermal SiO2 on Si. Appl. Phys. Lett. 65, 2281 (1994).
51. ConleyJ.F., LenahanP.M., EvansH.L., LowryR.K., and MorthorstT.J.: Electron-spin-resonance evidence for an impurity-related E′-like hole trapping defect in thermally grown SiO2 on Si. J. Appl. Phys. 76, 8186 (1994).
52. KangA.Y., LenahanP.M., and ConleyJ.F.: Electron spin resonance observation of trapped electron centers in atomic-layer-deposited hafnium oxide on Si. Appl. Phys. Lett. 83, 3407 (2003).
53. KimuraM.: Oxide breakdown mechanism and quantum physical chemistry for time-dependent dielectric breakdown. In IEEE International Reliability Physics Symposium (IEEE, Denver, Colorado, 1997); pp. 190200.
54. LiX., TungC.H., and PeyK.L.: The nature of dielectric breakdown. Appl. Phys. Lett. 93, 072903 (2008).
55. McPhersonJ.W.: Determination of the nature of molecular bonding in silica from time-dependent dielectric breakdown data. J. Appl. Phys. 95, 8101 (2004).
56. McPhersonJ.W., ReddyV.K., and MogulH.C.: Field-enhanced Si–Si bond-breakage mechanism for time-dependent dielectric breakdown in thin-film SiO2 dielectrics. Appl. Phys. Lett. 71, 1101 (1997).
57. McPhersonJ.W., KhamankarR.B., and ShanwareA.: Complementary model for intrinsic time-dependent dielectric breakdown in SiO2 dielectrics. J. Appl. Phys. 88, 5351 (2000).
58. JohJ. and del AlamoJ.A.: A current-transient methodology for trap analysis for GaN high electron mobility transistors. IEEE Trans. Electron Devices 58, 132 (2011).
59. IkedaN., NiiyamaY., KambayashiH., SatoY., NomuraT., KatoS., and YoshidaS.: GaN power transistors on Si substrates for switching applications. Proc. IEEE 98, 1151 (2010).
60. WuY. and del AlamoJ.A.: Electrical degradation of InAlN/GaN HEMTs operating under on conditions. IEEE Trans. Electron Devices 63, 3487 (2016).
61. GuoA. and del AlamoJ.A.: Unified mechanism for positive- and negative-bias temperature instability in GaN MOSFETs. IEEE Trans. Electron Devices 64, 2142 (2017).
62. FrancoJ., AlianA., KaczerB., LinD., IvanovT., PourghaderiA., MartensK., MolsY., ZhouD., WaldronN., SionckeS., KaueraufT., CollaertN., TheanA., HeynsM., and GroesenekenG.: Suitability of high-k gate oxides for II–V devices: A PBTI study in In0.53Ga0.47As devices with Al2O3 . In IEEE International Reliability Physics Symposium (IEEE, Waikoloa, Hawaii 2014); pp. 6A.2.16A.2.6.
63. WuT-L., FrancoJ., MarconD., De JaegerB., BakerootB., StoffelsS., Van HoveM., GroesenekenG., and DecoutereS.: Toward understanding positive bias temperature instability in fully recessed-gate GaN MISFETs. IEEE Trans. Electron Devices 63, 1853 (2016).
64. ChoM., LeeJ-D., AoulaicheM., KaczerB., RousselP., KaueraufT., DegraeveR., FrancoJ., RagnarssonL-Å., and GroesenekenG.: Insight into N/PBTI mechanisms in sub-1-nm-EOT devices. IEEE Trans. Electron Devices 59, 2042 (2012).
65. GuoA. and del AlamoJ.A.: Negative-bias temperature instability of GaN MOSFETs. In IEEE International Reliability Physics Symposium (IEEE, Pasadena, California 2016); pp. 4A.14A.1.6.
66. WrachienN., CesterA., WuY.Q., YeP.D., ZanoniE., and MeneghessoG.: Effects of positive and negative stresses on III–V MOSFETs with Al2O3 gate dielectric. IEEE Electron Device Lett. 32, 488 (2011).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 2
Total number of PDF views: 37 *
Loading metrics...

Abstract views

Total abstract views: 103 *
Loading metrics...

* Views captured on Cambridge Core between 26th September 2017 - 19th October 2017. This data will be updated every 24 hours.