Skip to main content
×
Home

Gate dielectric reliability and instability in GaN metal-insulator-semiconductor high-electron-mobility transistors for power electronics

  • Jesús A. del Alamo (a1), Alex Guo (a1) and Shireen Warnock (a1)
Abstract
Abstract

GaN field-effect transistors with impressive power switching characteristics have been demonstrated. Preventing their widespread field deployment are reliability and instability concerns. Some emanate from the use of a dielectric in the gate stack. Under typical operation, the gate dielectric comes periodically under intense electric field. This causes trapping and detrapping of electrons and introduces transient shifts in the threshold voltage, a phenomenon known as Bias-Temperature Instability (BTI). A high electric field also results in the formation of defects inside the dielectric. Over time, the defects accumulate and eventually result in the abrupt creation of a conducting path that shorts the dielectric and renders the device inoperable. This process, known as Time-Dependent Dielectric Breakdown (TDDB), often imposes a maximum lifetime for the FET technology. This article presents a methodology for the study of BTI and TDDB in insulated-gate GaN FETs. Our findings paint a picture of BTI and TDDB that in many respects is similar to that of Si transistors but with some unique characteristics. Understanding the physics and developing appropriate lifetime models is essential to enabling the deployment of this important new power electronics technology.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: alamo@mit.edu
Footnotes
Hide All

Contributing Editor: Don W. Shaw

This paper has been selected as an Invited Feature Paper.

Footnotes
References
Hide All
1. Morkoc H.: Nitride Semiconductors and Devices, 1st ed. (Springer-Verlag Berlin Heidelberg, Weinheim, Germany, 1999).
2. Nakamura S.: Nobel lecture: Background story of the invention of efficient blue InGaN light emitting diodes. Rev. Mod. Phys. 87, 1139 (2015).
3. Asif Khan M., Skogman R.A., Van Hove J.M., Olson D.T., and Kuznia J.N.: Atomic layer epitaxy of GaN over sapphire using switched metalorganic chemical vapor deposition. Appl. Phys. Lett. 60, 1366 (1992).
4. Manfra M.J., Weimann N.G., Hsu J.W.P., Pfeiffer L.N., West K.W., Syed S., Stormer H.L., Pan W., Lang D.V., Chu S.N.G., Kowach G., Sergent A.M., Caissie J., Molvar K.M., Mahoney L.J., and Molnar R.J.: High mobility AlGaN/GaN heterostructures grown by plasma-assisted molecular beam epitaxy on semi-insulating GaN templates prepared by hydride vapor phase epitaxy. J. Appl. Phys. 92, 338 (2002).
5. Asif Khan M., Bhattarai A., Kuznia J.N., and Olson D.T.: High electron mobility transistor based on a GaN–Al x Ga1−x N heterojunction. Appl. Phys. Lett. 63, 1214 (1993).
6. Pengelly R.S., Wood S.M., Milligan J.W., Sheppard S.T., and Pribble W.L.: A review of GaN on SiC high electron-mobility power transistors and MMICs. IEEE Trans. Microwave Theory Tech. 60, 1764 (2012).
7. Lidow A., Strydom J., de Rooij M., and Ma Y.: GaN Transistors for Efficient Power Conversion, 1st ed. (Power Conversion Publications, El Segundo, California, 2012).
8. Van Hove M., Boulay S., Bahl S.R., Stoffels S., Kang X., Wellekens D., Geens K., Delabie A., and Decoutere S.: CMOS process-compatible high-power low-leakage AlGaN/GaN MISHEMT on silicon. IEEE Electron Device Lett. 33, 667 (2012).
9. Then H.W., Chow L.A., Dasgupta S., Gardner S., Radosavljevic M., Rao V.R., Sung S.H., Yang G., and Fischer P.: High-K gate dielectric depletion-mode and enhancement-mode GaN MOS-HEMTs for improved off-state leakage and DIBL for power electronics and RF applications. In IEEE International Electron Devices Meeting (IEEE, Washington D.C., 2015); pp. 1623.
10. Deboy G., Treu M., Haeberlen O., and Neumayr D.: Si, SIC and GaN power devices: An unbiased view on key performance indicators. In IEEE International Electron Devices Meeting (IEEE, San Francisco, California 2016); pp. 2022.
11. Zanoni E., Meneghini M., Chini A., Marcon D., and Meneghesso G.: AlGaN/GaN-based HEMTs failure physics and reliability: Mechanisms affecting gate edge and Schottky junction. IEEE Trans. Electron Devices 60, 3119 (2013).
12. del Alamo J.A. and Joh J.: GaN HEMT reliability. Microelectron. Reliab. 49, 1200 (2009).
13. Marcon D., Viaene J., Favia P., Bender H., Kang X., Lenci S., Stoffels S., and Decoutere S.: Reliability of AlGaN/GaN HEMTs: Permanent leakage current increase and output current drop. Microelectron. Reliab. 52, 2188 (2012).
14. Ohki T., Kikkawa T., Inoue Y., Kanamura M., Okamoto N., Makiyama K., Imanishi K., Shigematsu H., Joshin K., and Hara N.: Reliability of GaN HEMTs: Current status and future technology. In IEEE International Reliability Physics Symposium (IEEE, Montreal, Canada 2009); pp. 6170.
15. Zafar S., Kim Y., Narayanan V., Cabral C., Paruchuri V., Doris B., Stathis J., Callegari A., and Chudzik M.: A comparative study of NBTI and PBTI (charge trapping) in SiO2/HfO2 stacks with FUSI, TiN, Re gates. In International Symposium on VLSI Technology (IEEE, Honolulu, Hawaii, 2006); pp. 2325.
16. Stathis J.H. and Zafar S.: The negative bias temperature instability in MOS devices: A review. Microelectron. Reliab. 46, 270 (2006).
17. Lagger P., Ostermaier C., Pobegen G., and Pogany D.: Towards understanding the origin of threshold voltage instability of AlGaN/GaN MIS-HEMTs. In IEEE International Electron Devices Meeting (IEEE, San Francisco, California, 2012); pp. 1321.
18. Svensson C. and Shumka A.: Time dependent breakdown in silicon dioxide films. Int. J. Electron. 38, 69 (1975).
19. Ribes G., Mitard J., Denais M., Bruyere S., Monsieur F., Parthasarathy C., Vincent E., and Ghibaudo G.: Review on high-k dielectrics reliability issues. IEEE Trans. Device Mater. Reliab. 5, 5 (2005).
20. Wu T-L., Marcon D., Zahid M.B., Van Hove M., Decoutere S., and Groeseneken G.: Comprehensive investigation of on-state stress on D-mode AlGaN/GaN MIS-HEMTs. In IEEE International Reliability Physics Symposium (IEEE, Monterrey, California, 2013); pp. 3C5C.
21. Alam M.A., Weir B.E., and Silverman P.J.: A study of soft and hard breakdown-part I: Analysis of statistical percolation conductance. IEEE Trans. Electron Devices 49, 232 (2002).
22. Alam M.A., Weir B.E., and Silverman P.J.: A study of soft and hard breakdown-part II: Principles of area, thickness, and voltage scaling. IEEE Trans. Electron Devices 49, 239 (2002).
23. Li X., Tung C.H., Pey K.L., and Lo V.L.: The chemistry of gate dielectric breakdown. In IEEE International Electron Devices Meeting (IEEE, San Francisco California, 2008); pp. 14.
24. Warnock S. and del Alamo J.A.: Stress and characterization strategies to assess oxide breakdown in high-voltage GaN field-effect transistors. In Compound Semiconductor Manufacturing Technology Conference (CS MANTECH, Scottsdale, Arizona, 2015); pp. 311314.
25. Hua M., Liu C., Yang S., Liu S., Fu K., Dong Z., Cai Y., Zhang B., and Chen K.J.: Characterization of leakage and reliability of SiN x gate dielectric by low-pressure chemical vapor deposition for GaN-based MIS-HEMTs. IEEE Trans. Electron Devices 62, 3215 (2015).
26. Warnock S. and del Alamo J.A.: Progressive breakdown in high-voltage GaN MIS-HEMTs. In IEEE International Reliability Physics Symposium (IEEE, Pasadena, California, 2016); pp. 4A6A.
27. Huang X., Liu Z., Li Q., and Lee F.C.: Evaluation and application of 600 V GaN HEMT in cascode structure. IEEE Trans. Power Electron. 29, 2453 (2014).
28. Meneghini M., Rossetto I., De Santi C., Rampazzo R., Tajalli A., Barbato A., Ruzzarin M., Borga M., Canato E., Zanoni E., and Meneghesso G.: Reliability and failure analysis in power GaN-HEMTs: An overview. In IEEE International Reliability Physics Symposium (IEEE, Monterrey, California 2017); pp. 3B-2.13B-2.8.
29. Baliga B.J.: Gallium nitride devices for power electronic applications. Semicond. Sci. Technol. 28, 074011 (2013).
30. Marino F.A., Bisi D., Meneghini M., Verzellesi G., Zanoni E., Van Hove M., You S., Decoutere S., Marcon D., Stoffels S., Ronchi N., and Meneghesso G.: Analysis of off-state leakage mechanisms in GaN-based MIS-HEMTs: Experimental data and numerical simulation. Solid-State Electron. 113, 9 (2015).
31. Meneghini M., Rossetto I., Hurkx F., Sonsky J., Croon J.A., Meneghesso G., and Zanoni E.: Extensive investigation of time-dependent breakdown of GaN-HEMTs submitted to off-state stress. IEEE Trans. Electron Devices 62, 2549 (2015).
32. Wolters D.R. and van der Schoot J.J.: Dielectric breakdown in MOS devices, part I: Defect-related and intrinsic breakdown. Philips J. Res. 45, 115 (1985).
33. Demirtas S., Joh J., and del Alamo J.A.: High voltage degradation of GaN high electron mobility transistors on silicon substrate. Microelectron. Reliab. 50, 758 (2010).
34. Degraeve R., Kauerauf T., Cho M., Zahid M., Ragnarsson L-A., Brunco D.P., Kaczer B., Roussel P., De Gendt S., and Groeseneken G.: Degradation and breakdown of 0.9 nm EOT SiO/sub 2/ ALD HfO/sub 2/metal gate stacks under positive constant voltage stress. In IEEE International Electron Devices Meeting (IEEE, Washington, D.C., 2005); pp. 408411.
35. Degraeve R., Kaczer B., and Groeseneken G.: Degradation and breakdown in thin oxide layers: Mechanisms, models and reliability prediction. Microelectron. Reliab. 39, 1445 (1999).
36. Palumbo F., Eizenberg M., and Lombardo S.: General features of progressive breakdown in gate oxides: A compact model. In IEEE International Reliability Physics Symposium (2015); pp. 5A.1.15A.1.6.
37. Wu E.Y., Stathis J.H., and Han L-K.: Ultra-thin oxide reliability for ULSI applications. Semicond. Sci. Technol. 15(5), 425 (2000).
38. Bersuker G., Chowdhury N., Young C., Heh D., Misra D., and Choi R.: Progressive breakdown characteristics of high-k/metal gate stacks. In IEEE International Reliability Physics Symposium (IEEE, Phoenix, Arizona, 2007); pp. 4954.
39. Guo A. and del Alamo J.A.: Positive-bias temperature instability (PBTI) of GaN MOSFETs. In IEEE International Reliability Physics Symposium (IEEE, Monterrey, California, 2015); pp. 6C.5.16C.5.7.
40. Crupi F., Degraeve R., Groeseneken G., Nigam T., and Maes H.E.: On the properties of the gate and substrate current after soft breakdown in ultrathin oxide layers. IEEE Trans. Electron Devices 45, 2329 (1998).
41. Sune J., Wu E.Y., Jiménez D., Vollertsen R.P., and Miranda E.: Understanding soft and hard breakdown statistics, prevalence ratios and energy dissipation during breakdown runaway. In IEEE International Electron Devices Meeting (IEEE, Washington, D.C., 2001); pp. 117120.
42. Warnock S. and del Alamo J.A.: OFF-state TDDB in high-voltage GaN MIS-HEMTs. In IEEE International Reliability Physics Symposium (2017); pp. 4B-3.14B-3.6.
43. Jin D., Joh J., Krishnan S., Tipirneni N., Pendharkar S., and del Alamo J.A.: Total current collapse in high-voltage GaN MIS-HEMTs induced by Zener trapping. In IEEE International Electron Devices Meeting (IEEE, Washington D.C., 2013); pp. 148151.
44. Demirtas S. and del Alamo J.A.: Effect of trapping on the critical voltage for degradation in GaN high electron mobility transistors. In IEEE International Reliability Physics Symposium (IEEE, Anaheim, California, 2010); pp. 134138.
45. Lagger P., Reiner M., Pogany D., and Ostermaier C.: Comprehensive study of the complex dynamics of forward bias-induced threshold voltage drifts in GaN based MIS-HEMTs by stress/recovery experiments. IEEE Trans. Electron Devices 61, 1022 (2014).
46. Lagger P., Donsa S., Spreitzer P., Pobegen G., Reiner M., Naharashi H., Mohamed J., Mosslacher H., Prechtl G., Pogany D., and Ostermaier C.: Thermal activation of PBTI-related stress and recovery processes in GaN MIS-HEMTs using on-wafer heaters. In IEEE International Reliability Physics Symposium (IEEE, Monterrey, California, 2015); pp. 6C.2.16C.2.7.
47. Stradiotto R., Pobegen G., Ostermaier C., and Grasser T.: On the fly characterization of charge trapping phenomena at GaN/dielectric and GaN/AlGaN/dielectric interfaces using impedance measurements. In IEEE Solid State Device Research Conference (IEEE, Sapporo, Japan, 2015); pp. 7275.
48. Jin D. and del Alamo J.A.: Methodology for the study of dynamic on-resistance in high-voltage GaN field-effect transistors. IEEE Trans. Electron Devices 60, 3190 (2013).
49. Alam M.A., Bude J., and Ghetti A.: Field acceleration for oxide breakdown—Can an accurate anode hole injection model resolve the E vs. 1/E controversy? In IEEE International Reliability Physics Symposium (IEEE, San Jose, California, 2000); pp. 2126.
50. Conley J.F., Lenahan P.M., Evans H.L., Lowry R.K., and Morthorst T.J.: Observation and electronic characterization of two E′ center charge traps in conventionally processed thermal SiO2 on Si. Appl. Phys. Lett. 65, 2281 (1994).
51. Conley J.F., Lenahan P.M., Evans H.L., Lowry R.K., and Morthorst T.J.: Electron-spin-resonance evidence for an impurity-related E′-like hole trapping defect in thermally grown SiO2 on Si. J. Appl. Phys. 76, 8186 (1994).
52. Kang A.Y., Lenahan P.M., and Conley J.F.: Electron spin resonance observation of trapped electron centers in atomic-layer-deposited hafnium oxide on Si. Appl. Phys. Lett. 83, 3407 (2003).
53. Kimura M.: Oxide breakdown mechanism and quantum physical chemistry for time-dependent dielectric breakdown. In IEEE International Reliability Physics Symposium (IEEE, Denver, Colorado, 1997); pp. 190200.
54. Li X., Tung C.H., and Pey K.L.: The nature of dielectric breakdown. Appl. Phys. Lett. 93, 072903 (2008).
55. McPherson J.W.: Determination of the nature of molecular bonding in silica from time-dependent dielectric breakdown data. J. Appl. Phys. 95, 8101 (2004).
56. McPherson J.W., Reddy V.K., and Mogul H.C.: Field-enhanced Si–Si bond-breakage mechanism for time-dependent dielectric breakdown in thin-film SiO2 dielectrics. Appl. Phys. Lett. 71, 1101 (1997).
57. McPherson J.W., Khamankar R.B., and Shanware A.: Complementary model for intrinsic time-dependent dielectric breakdown in SiO2 dielectrics. J. Appl. Phys. 88, 5351 (2000).
58. Joh J. and del Alamo J.A.: A current-transient methodology for trap analysis for GaN high electron mobility transistors. IEEE Trans. Electron Devices 58, 132 (2011).
59. Ikeda N., Niiyama Y., Kambayashi H., Sato Y., Nomura T., Kato S., and Yoshida S.: GaN power transistors on Si substrates for switching applications. Proc. IEEE 98, 1151 (2010).
60. Wu Y. and del Alamo J.A.: Electrical degradation of InAlN/GaN HEMTs operating under on conditions. IEEE Trans. Electron Devices 63, 3487 (2016).
61. Guo A. and del Alamo J.A.: Unified mechanism for positive- and negative-bias temperature instability in GaN MOSFETs. IEEE Trans. Electron Devices 64, 2142 (2017).
62. Franco J., Alian A., Kaczer B., Lin D., Ivanov T., Pourghaderi A., Martens K., Mols Y., Zhou D., Waldron N., Sioncke S., Kauerauf T., Collaert N., Thean A., Heyns M., and Groeseneken G.: Suitability of high-k gate oxides for II–V devices: A PBTI study in In0.53Ga0.47As devices with Al2O3 . In IEEE International Reliability Physics Symposium (IEEE, Waikoloa, Hawaii 2014); pp. 6A.2.16A.2.6.
63. Wu T-L., Franco J., Marcon D., De Jaeger B., Bakeroot B., Stoffels S., Van Hove M., Groeseneken G., and Decoutere S.: Toward understanding positive bias temperature instability in fully recessed-gate GaN MISFETs. IEEE Trans. Electron Devices 63, 1853 (2016).
64. Cho M., Lee J-D., Aoulaiche M., Kaczer B., Roussel P., Kauerauf T., Degraeve R., Franco J., Ragnarsson L-Å., and Groeseneken G.: Insight into N/PBTI mechanisms in sub-1-nm-EOT devices. IEEE Trans. Electron Devices 59, 2042 (2012).
65. Guo A. and del Alamo J.A.: Negative-bias temperature instability of GaN MOSFETs. In IEEE International Reliability Physics Symposium (IEEE, Pasadena, California 2016); pp. 4A.14A.1.6.
66. Wrachien N., Cester A., Wu Y.Q., Ye P.D., Zanoni E., and Meneghesso G.: Effects of positive and negative stresses on III–V MOSFETs with Al2O3 gate dielectric. IEEE Electron Device Lett. 32, 488 (2011).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 2
Total number of PDF views: 62 *
Loading metrics...

Abstract views

Total abstract views: 145 *
Loading metrics...

* Views captured on Cambridge Core between 26th September 2017 - 22nd November 2017. This data will be updated every 24 hours.