Skip to main content
×
Home
    • Aa
    • Aa

Grain boundary relaxation strengthening of nanocrystalline Ni–W alloys

  • Timothy J. Rupert (a1), Jason R. Trelewicz (a2) and Christopher A. Schuh (a2)
Abstract
Abstract

The hardening effect caused by the relaxation of nonequilibrium grain boundary structure has been explored in nanocrystalline Ni–W alloys. First, the kinetics of relaxation hardening are studied, showing that higher annealing temperatures result in faster, more pronounced strengthening. Based on the temperature dependence of relaxation strengthening kinetics, triple junction diffusion is suggested as a plausible kinetic rate limiter for the removal of excess grain boundary defects in these materials. Second, the magnitude of relaxation strengthening is explored over a wide range of grain sizes spanning the Hall–Petch breakdown, with an apparent maximum hardening effect found at a grain size below 10 nm. The apparent activation volume for plastic deformation is unaffected by annealing for grain sizes down to ∼10 nm, but increases with annealing for the finest grain sizes, suggesting a change in the dominant deformation mechanism for these structures.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: trupert@uci.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1. R.J. Asaro , P. Krysl , and B. Kad : Deformation mechanism transitions in nanoscale fcc metals. Philos. Mag. Lett. 83, 733 (2003).

2. Z. Budrovic , H. Van Swygenhoven , P.M. Derlet , S. Van Petegem , and B. Schmitt : Plastic deformation with reversible peak broadening in nanocrystalline nickel. Science 304, 273 (2004).

3. S. Cheng , J.A. Spencer , and W.W. Milligan : Strength and tension/compression asymmetry in nanostructured and ultrafine-grain metals. Acta Mater. 51, 4505 (2003).

4. D.S. Gianola , S. Van Petegem , M. Legros , S. Brandstetter , H. Van Swygenhoven , and K.J. Hemker : Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater. 54, 2253 (2006).

5. M. Jin , A.M. Minor , E.A. Stach , and J.W. Morris : Direct observation of deformation-induced grain growth during the nanoindentation of ultrafine-grained Al at room temperature. Acta Mater. 52, 5381 (2004).

6. K. Zhang , J.R. Weertman , and J.A. Eastman : The influence of time, temperature, and grain size on indentation creep in high-purity nanocrystalline and ultrafine grain copper. Appl. Phys. Lett. 85, 5197 (2004).

7. T.J. Rupert , D.S. Gianola , Y. Gan , and K.J. Hemker : Experimental observations of stress-driven grain boundary migration. Science 326, 1686 (2009).

8. M. Ke , S.A. Hackney , W.W. Milligan , and E.C. Aifantis : Observation and measurement of grain rotation and plastic strain in nanostructured metal thin films. Nanostruct. Mater. 5, 689 (1995).

9. K.S. Kumar , S. Suresh , M.F. Chisholm , J.A. Horton , and P. Wang : Deformation of electrodeposited nanocrystalline nickel. Acta Mater. 51, 387 (2003).

10. Z.W. Shan , E.A. Stach , J.M.K. Wiezorek , J.A. Knapp , D.M. Follstaedt , and S.X. Mao : Grain boundary-mediated plasticity in nanocrystalline nickel. Science 305, 654 (2004).

11. J. Schiotz , F.D. Di Tolla , and K.W. Jacobsen : Softening of nanocrystalline metals at very small grain sizes. Nature 391, 561 (1998).

12. H. Van Swygenhoven and P.A. Derlet : Grain-boundary sliding in nanocrystalline fcc metals. Phys. Rev. B 64, 224105 (2001).

13. D. Jang and M. Atzmon : Grain-boundary relaxation and its effect on plasticity in nanocrystalline Fe. J. Appl. Phys. 99, 083504 (2006).

14. S. Ranganathan , R. Divakar , and V.S. Raghunathan : Interface structures in nanocrystalline materials. Scr. Mater. 44, 1169 (2001).

15. X.L. Wu and Y.T. Zhu : Partial-dislocation-mediated processes in nanocrystalline Ni with nonequilibrium grain boundaries. Appl. Phys. Lett. 89, 031922 (2006).

16. J. Loffler and J. Weissmuller : Grain-boundary atomic structure in nanocrystalline palladium from x-ray atomic distribution-functions. Phys. Rev. B 52, 7076 (1995).

19. A. Tschope , R. Birringer , and H. Gleiter : Calorimetric measurements of the thermal relaxation in nanocrystalline platinum. J. Appl. Phys. 71, 5391 (1992).

21. L. Chang , P.W. Kao , and C.H. Chen : Strengthening mechanisms in electrodeposited Ni-P alloys with nanocrystalline grains. Scr. Mater. 56, 713 (2007).

22. T. Volpp , E. Goring , W.M. Kuschke , and E. Arzt : Grain size determination and limits to Hall-Petch behavior in nanocrystalline NiAl powders. Nanostruct. Mater. 8, 855 (1997).

23. J.R. Weertman : Hall-Petch strengthening in nanocrystalline metals. Mater. Sci. Eng. A 166, 161 (1993).

24. G.E. Fougere , J.R. Weertman , R.W. Siegel , and S. Kim : Grain-size dependent hardening and softening of nanocrystalline Cu and Pd. Scr. Metall. Mater. 26, 1879 (1992).

25. Y.M. Wang , S. Cheng , Q.M. Wei , E. Ma , T.G. Nieh , and A. Hamza : Effects of annealing and impurities on tensile properties of electrodeposited nanocrystalline Ni. Scr. Mater. 51, 1023 (2004).

26. A. Hasnaoui , H. Van Swygenhoven , and P.M. Derlet : On non-equilibrium grain boundaries and their effect on thermal and mechanical behaviour: A molecular dynamics computer simulation. Acta Mater. 50, 3927 (2002).

27. N.Q. Vo , R.S. Averback , P. Bellon , and A. Caro : Limits of hardness at the nanoscale: Molecular dynamics simulations. Phys. Rev. B 78, 241402 (2008).

28. N.Q. Vo , R.S. Averback , P. Bellon , and A. Caro : Yield strength in nanocrystalline Cu during high strain rate deformation. Scr. Mater. 61, 76 (2009).

29. A.J. Detor and C.A. Schuh : Tailoring and patterning the grain size of nanocrystalline alloys. Acta Mater. 55, 371 (2007).

30. A.J. Detor , M.K. Miller , and C.A. Schuh : Solute distribution in nanocrystalline Ni-W alloys examined through atom probe tomography. Philos. Mag. 86, 4459 (2006).

31. A.J. Detor , M.K. Miller , and C.A. Schuh : Measuring grain-boundary segregation in nanocrystalline alloys: Direct validation of statistical techniques using atom probe tomography. Philos. Mag. Lett. 87, 581 (2007).

32. T.J. Rupert , J.C. Trenkle , and C.A. Schuh : Enhanced solid solution effects on the strength of nanocrystalline alloys. Acta Mater. 59, 1619 (2011).

33. Z. Zhang , F. Zhou , and E.J. Lavernia : On the analysis of grain size in bulk nanocrystalline materials via x-ray diffraction. Metall. Mater. Trans. A 34, 1349 (2003).

35. J.R. Trelewicz and C.A. Schuh : The Hall-Petch breakdown in nanocrystalline metals: A crossover to glass-like deformation. Acta Mater. 55, 5948 (2007).

37. B.N. Lucas and W.C. Oliver : Indentation power-law creep of high-purity indium. Metall. Mater. Trans. A 30, 601 (1999).

38. A.C. Lund and C.A. Schuh : Strength asymmetry in nanocrystalline metals under multiaxial loading. Acta Mater. 53, 3193 (2005).

39. J.R. Trelewicz and C.A. Schuh : The Hall-Petch breakdown at high strain rates: Optimizing nanocrystalline grain size for impact applications. Appl. Phys. Lett. 93, 171916 (2008).

43. J. Horvath , R. Birringer , and H. Gleiter : Diffusion in nanocrystalline material. Solid State Commun. 62, 319 (1987).

44. Y.R. Kolobov , G.P. Grabovetskaya , M.B. Ivanov , A.P. Zhilyaev , and R.Z. Valiev : Grain-boundary diffusion characteristics of nanostructured nickel. Scr. Mater. 44, 873 (2001).

45. S. Schumacher , R. Birringer , R. Strauss , and H. Gleiter : Diffusion of silver in nanocrystalline copper between 303-K and 373-K. Acta Metall. 37, 2485 (1989).

46. J.M. Blakely and H. Mykura : Surface self diffusion measurements on nickel by the mass transfer method. Acta Metall. 9, 23 (1961).

47. Y. Chen and C.A. Schuh : Geometric considerations for diffusion in polycrystalline solids. J. Appl. Phys. 101, 063524 (2007).

48. Y. Chen and C.A. Schuh : Contribution of triple junctions to the diffusion anomaly in nanocrystalline materials. Scr. Mater. 57, 253 (2007).

49. A. Tschope and R. Birringer : Thermodynamics of nanocrystalline platinum. Acta Metall. Mater. 41, 2791 (1993).

51. G. Taylor : Thermally-activated deformation of bcc metals and alloys. Prog. Mater. Sci. 36, 29 (1992).

52. A.C. Lund , T.G. Nieh , and C.A. Schuh : Tension/compression strength asymmetry in a simulated nanocrystalline metal. Phys. Rev. B 69, 012101 (2004).

53. W.H. Jiang and M. Atzmon : Room-temperature flow in a metallic glass—Strain-rate dependence of shear-band behavior. J. Alloy. Comp. 509, 7395 (2011).

54. Y.F. Shi and M.L. Falk : Stress-induced structural transformation and shear banding during simulated nanoindentation of a metallic glass. Acta Mater. 55, 4317 (2007).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 6
Total number of PDF views: 97 *
Loading metrics...

Abstract views

Total abstract views: 212 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 29th May 2017. This data will be updated every 24 hours.