Skip to main content

Gram scale synthesis of Fe/FexOy core–shell nanoparticles and their incorporation into matrix-free superparamagnetic nanocomposites

  • John Watt (a1), Grant C. Bleier (a1), Zachary W. Romero (a1), Bradley G. Hance (a1), Jessica A. Bierner (a2), Todd C. Monson (a2) and Dale L. Huber (a1)...

Significant reductions recently seen in the size of wide-bandgap power electronics have not been accompanied by a relative decrease in the size of the corresponding magnetic components. To achieve this, a new generation of materials with high magnetic saturation and permeability are needed. Here, we develop gram-scale syntheses of superparamagnetic Fe/FexOy core–shell nanoparticles and incorporate them as the magnetic component in a strongly magnetic nanocomposite. Nanocomposites are typically formed by the organization of nanoparticles within a polymeric matrix. However, this approach can lead to high organic fractions and phase separation; reducing the performance of the resulting material. Here, we form aminated nanoparticles that are then cross-linked using epoxy chemistry. The result is a magnetic nanoparticle component that is covalently linked and well separated. By using this ‘matrix-free’ approach, we can substantially increase the magnetic nanoparticle fraction, while still maintaining good separation, leading to a superparamagnetic nanocomposite with strong magnetic properties.

Corresponding author
a)Address all correspondence to this author. e-mail:
Hide All
1.Hurley, W.G. and Wolfle, W.H.: Transformers and Inductors for Power Electronics: Theory, Design and Applications, 1st ed. (John Wiley & Sons Ltd., West Sussex, U.K., 2013).
2.Beatrice, C., Dobak, S., Ferrara, E., Fiorillo, F., Ragusa, C., Fuzer, J., and Kollar, P.: Broadband magnetic losses of nanocrystalline ribbons and powder cores. J. Magn. Magn. Mater. 420, 317323 (2016).
3.Mandel, K., Hutter, F., Gellermann, C., and Sextl, G.: Modified superparamagnetic nanocomposite microparticles for highly selective Hg(II) or Cu(II) separation and recovery from aqueous solutions. ACS Appl. Mater. Interfaces 4, 56335642 (2012).
4.Dong, W., Li, Y., Niu, D., Ma, Z., Gu, J., Chen, Y., Zhao, W., Liu, X., Liu, C., and Shi, J.: Facile synthesis of monodisperse superparamagnetic Fe3O4 core@hybrid@Au shell nanocomposite for bimodal imaging and photothermal therapy. Adv. Mater. 23, 53925397 (2011).
5.Gu, W.L., Deng, X., Gu, X.X., Jia, X.F., Lou, B.H., Zhang, X.W., Li, J., and Wang, E.K.: Stabilized, superparamagnetic functionalized graphene/Fe3O4@Au nanocomposites for a magnetically-controlled solid-state electrochemiluminescence biosensing application. Anal. Chem. 87, 18761881 (2015).
6.Zhu, L.J., Wang, D.L., Wei, X., Zhu, X.Y., Li, J.Q., Tu, C.L., Su, Y., Wu, J.L., Zhu, B.S., and Yan, D.Y.: Multifunctional pH-sensitive superparamagnetic iron-oxide nanocomposites for targeted drug delivery and MR imaging. J. Controlled Release 169, 228238 (2013).
7.Cullity, B.: Introduction to Magnetic Materials (Addison-Wesley Pub. Co., Reading, MA, 1972).
8.Huber, D.L.: Synthesis, properties, and applications of iron nanoparticles. Small 1, 482501 (2005).
9.Knobel, M., Nunes, W.C., Socolovsky, L.M., De Biasi, E., Vargas, J.M., and Denardin, J.C.: Superparamagnetism and other magnetic features in granular materials: A review on ideal and real systems. J. Nanosci. Nanotechnol. 8, 28362857 (2008).
10.Pyun, J.: Nanocomposite materials from functional polymers and magnetic colloids. Polym. Rev. 47, 231263 (2007).
11.Stone, R., Hipp, S., Barden, J., Brown, P.J., and Mefford, O.T.: Highly scalable nanoparticle–polymer composite fiber via wet spinning. J. Appl. Polym. Sci. 130, 19751980 (2013).
12.Wakayama, H. and Yonekura, H.: Synthesis and magnetic properties of FePt nanocomposite magnets via self-assembled block copolymer templates. Mater. Lett. 171, 268272 (2016).
13.Behrens, S. and Appel, I.: Magnetic nanocomposites. Curr. Opin. Biotechnol. 39, 8996 (2016).
14.Chen, S., Zhang, S., Jin, T., and Zhao, G.: Synthesis and characterization of novel covalently linked waterborne polyurethane/Fe3O4 nanocomposite films with superior magnetic, conductive properties and high latex storage stability. Chem. Eng. J. 286, 249258 (2016). Leon, A.C., Chen, Q., Palaganas, N.B., Palaganas, J.O., Manapat, J., and Advincula, R.C.: High performance polymer nanocomposites for additive manufacturing applications. React. Funct. Polym. 103, 141155 (2016).
16.Hooper, J.B. and Schweizer, K.S.: Theory of phase separation in polymer nanocomposites. Macromolecules 39, 51335142 (2006).
17.Mochalin, V.N., Neitzel, I., Etzold, B.J.M., Peterson, A., Palmese, G., and Gogotsi, Y.: Covalent incorporation of aminated nanodiamond into an epoxy polymer network. ACS Nano 5, 74947502 (2011).
18.Dach, B.I., Rengifo, H.R., Turro, N.J., and Koberstein, J.T.: Cross-linked “matrix-free” nanocomposites from reactive polymer-silica hybrid nanoparticles. Macromolecules 43, 65496552 (2010).
19.Compton, B.G. and Lewis, J.A.: 3D-printing of lightweight cellular composites. Adv. Mater. 26, 59305935 (2014).
20.Jin, F.L., Li, X., and Park, S.J.: Synthesis and application of epoxy resins: A review. J. Ind. Eng. Chem. 29, 111 (2015).
21.Sugawa, Y., Ishidate, K., Sonehara, M., and Sato, T.: Carbonyl-iron/epoxy composite magnetic core for planar power inductor used in package-level power grid. IEEE Trans. Magn. 49, 41724175 (2013).
22.Gu, H., Tadakamalla, S., Huang, Y., Colorado, H.A., Luo, Z., Haldolaarachchige, N., Young, D.P., Wei, S., and Guo, Z.: Polyaniline stabilized magnetite nanoparticle reinforced epoxy nanocomposites. ACS Appl. Mater. Interfaces 4, 56135624 (2012).
23.Zhu, J.H., Wei, S.Y., Ryu, J., Sun, L.Y., Luo, Z.P., and Guo, Z.H.: Magnetic epoxy resin nanocomposites reinforced with core–shell structured Fe@FeO nanoparticles: Fabrication and property analysis. ACS Appl. Mater. Interfaces 2, 21002107 (2010).
24.Pour, Z.S. and Ghaemy, M.: Thermo-mechanical behaviors of epoxy resins reinforced with silane-epoxide functionalized α-Fe2O3 nanoparticles. Prog. Org. Coat. 77, 13161324 (2014).
25.Naughton, B.T., Majewski, P., and Clarke, D.R.: Magnetic properties of nickel–zinc ferrite toroids prepared from nanoparticles. J. Am. Ceram. Soc. 90, 35473553 (2007).
26.Mikuszeit, N., Vedmedenko, E.Y., and Oepen, H.P.: Multipole interaction of polarized single-domain particles. J. Phys. Condens. Matter 16, 90379045 (2004).
27.Bleier, G.C., Watt, J., Simocko, C.K., Lavin, J.M., and Huber, D.L.: Reversible magnetic agglomeration—A mechanism for true thermodynamic control over nanoparticle size. Angew. Chem. Int. Ed. Engl. (2018) DOI: 10.1002/anie.201800959.
28.Fellows, B.D., Sandler, S., Livingston, J., Fuller, K., Nwandu, L., Timmins, S., Lantz, K.A., Stefik, M., and Mefford, O.T.: Extended LaMer synthesis of cobalt-doped ferrite. IEEE Magn. Lett. 9, 15 (2018).
29.Vreeland, E.C., Watt, J., Schober, G.B., Hance, B.G., Austin, M.J., Price, A.D., Fellows, B.D., Monson, T.C., Hudak, N.S., Maldonado-Camargo, L., Bohorquez, A.C., Rinaldi, C., and Huber, D.L.: Enhanced nanoparticle size control by extending LaMer’s mechanism. Chem. Mater. 27, 60596066 (2015).
30.Unni, M., Uhl, A.M., Savliwala, S., Savitzky, B.H., Dhavalikar, R., Garraud, N., Arnold, D.P., Kourkoutis, L.F., Andrew, J.S., and Rinaldi, C.: Thermal decomposition synthesis of iron oxide nanoparticles with diminished magnetic dead layer by controlled addition of oxygen. ACS Nano 11, 22842303 (2017).
31.Monson, T.C., Ma, Q., Stevens, T.E., Lavin, J.M., Leger, J.L., Klimov, P.V., and Huber, D.L.: Implication of ligand choice on surface properties, crystal structure, and magnetic properties of iron nanoparticles. Part. Part. Syst. Char. 30, 258265 (2013).
32.Concas, G., Congiu, F., Muscas, G., and Peddis, D.: Determination of blocking temperature in magnetization and mössbauer time scale: A functional form approach. J. Phys. Chem. C 121, 1654116548 (2017).
33.Watt, J., Bleier, G.C., Austin, M.J., Ivanov, S.A., and Huber, D.L.: Non-volatile iron carbonyls as versatile precursors for the synthesis of iron-containing nanoparticles. Nanoscale 9, 66326637 (2017).
34.Yun, H., Kim, J., Paik, T., Meng, L.Y., Jo, P.S., Kikkawa, J.M., Kagan, C.R., Allen, M.G., and Murray, C.B.: Alternate current magnetic property characterization of nonstoichiometric zinc ferrite nanocrystals for inductor fabrication via a solution based process. J. Appl. Phys. 119 (2016).
35.Park, J., Joo, J., Kwon, S.G., Jang, Y., and Hyeon, T.: Synthesis of monodisperse spherical nanocrystals. Angew. Chem., Int. Ed. Engl. 46, 46304660 (2007).
36.Schonecker, S., Li, X., Johansson, B., Kwon, S.K., and Vitos, L.: Thermal surface free energy and stress of iron. Sci. Rep. 5, 14860 (2015).
37.Grochola, G., Russo, S.P., Yarovsky, I., and Snook, I.K.: “Exact” surface free energies of iron surfaces using a modified embedded atom method potential and lambda integration. J. Chem. Phys. 120, 34253430 (2004).
38.Tripp, G.K., Good, K.L., Motta, M.J., Kass, P.H., and Murphy, C.J.: The effect of needle gauge, needle type, and needle orientation on the volume of a drop. Vet. Ophthalmol. 19, 3842 (2016).
39.Li, T., Senesi, A.J., and Lee, B.: Small angle X-ray scattering for nanoparticle research. Chem. Rev. 116, 1112811180 (2016).
40.Xu, Y., Qin, Y., Palchoudhury, S., and Bao, Y.: Water-soluble iron oxide nanoparticles with high stability and selective surface functionality. Langmuir 27, 89908997 (2011).
41.Nakamura, H. and Tamura, Z.: Fluorometric determination of secondary amines based on their reaction with fluorescamine. Anal. Chem. 52, 20872092 (1980).
42.Eastwood, D., Fernandez, C., Yoon, B.Y., Sheaff, C.N., and Wai, C.M.: Fluorescence of aromatic amines and their fluorescamine derivatives for detection of explosive vapors. Appl. Spectrosc. 60, 958963 (2006).
43.Gore, M.G.: Spectrophotometry and Spectrofluorimetry: A Practical Approach, 2nd ed. (Oxford University Press, New York, NY, 2000).
44.Puig, J., Hoppe, C.E., Fasce, L.A., Perez, C.J., Pineiro-Redondo, Y., Banobre-Lopez, M., Lopez-Quintela, M.A., Rivas, J., and Williams, R.J.J.: Superparamagnetic nanocomposites based on the dispersion of oleic acid-stabilized magnetite nanoparticles in a diglycidylether of bisphenol a-based epoxy matrix: Magnetic hyperthermia and shape memory. J. Phys. Chem. C 116, 1342113428 (2012).
45.Kessler, M.: Advanced Topics in Characterization of Composites, 1st ed. (Trafford Publishing, Bloomington, IN, 2004).
46.Gao, X., Shen, J., Hsia, Y., and Chen, Y.: Reduction of supported iron oxide studied by temperature-programmed reduction combined with mossbauer spectroscopy and X-ray diffraction. J. Chem. Soc., Faraday Trans. 89, 10791084 (1993).
47.Bolm, C., Legros, J., Le Paih, J., and Zani, L.: Iron-catalyzed reactions in organic synthesis. Chem. Rev. 104, 62176254 (2004).
48.Kin, M., Kura, H., and Ogawa, T.: Core loss and magnetic susceptibility of superparamagnetic Fe nanoparticle assembly. AIP Adv. 6, 125013 (2016).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary materials

Watt et al. supplementary material
Figures S1-S4

 Word (1.0 MB)
1.0 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed