Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T08:27:06.440Z Has data issue: false hasContentIssue false

Graphene based biosensors for healthcare

Published online by Cambridge University Press:  16 May 2017

Trupti Terse-Thakoor*
Affiliation:
Department of Bioengineering, University of California, Riverside, California 92521, USA
Sushmee Badhulika
Affiliation:
Department of Electrical Engineering, Indian Institute of Technology, 502285 Hyderabad, India
Ashok Mulchandani*
Affiliation:
Department of Chemical & Environmental Engineering, University of California, Riverside, California 92521, USA
*
a) Address all correspondence to these authors. e-mail: tters001@ucr.edu
b) e-mail: adani@engr.ucr.edu
Get access

Abstract

Graphene due to its unique physicochemical properties mainly its large surface to volume ratio, excellent thermal and electrical conductivity, biocompatibility, as well as broad electrochemical potential, has received considerable attention for biosensing applications. In this review paper, we provide a comprehensive overview of the recent advances in the field of electrochemical biosensors developed using the graphene nanomaterial including graphene oxide, reduced graphene oxide, CVD graphene, and various graphene based nanostructures including nanomesh, nanowalls, etc. in healthcare related applications. The review focusses on material synthesis, device fabrication, and biofunctionalization of graphene electrodes in biosensing such as those based on electrochemical impedance, amperometry/voltammetry, potentiometry, conductometry, and field effect transistor. Additionally, several ingenious biosensing strategies of graphene biosensor in clinical diagnosis for detection of proteins (disease biomarkers), nucleic acids (mutation analysis in genetic diseases), small molecules (disease metabolites like glucose, lactic acid etc.), and pathogens (bacterial and viral infections) have also been discussed.

Type
Invited Reviews
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Venkatesan Renugopalakrishnan

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

REFERENCES

Fitzer, E., Kochling, K.H., Boehm, H.P., and Marsh, H.: Recommended terminology for the description of carbon as a solid—(iupac recommendations 1995). Pure Appl. Chem. 67, 473 (1995).Google Scholar
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666 (2004).Google Scholar
Dreyer, D.R., Park, S., Bielawski, C.W., and Ruoff, R.S.: The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228 (2010).Google Scholar
Vanbommel, A.J., Crombeen, J.E., and Vantooren, A.: Leed and auger-electron observations of SIC (0001) surface. Surf. Sci. 48, 463 (1975).Google Scholar
de Heer, W.A., Berger, C., Ruan, M., Sprinkle, M., Li, X., Hu, Y., Zhang, B., Hankinson, J., and Conrad, E.: Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide. Proc. Natl. Acad. Sci. U. S. A. 108, 16900 (2011).Google Scholar
Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C., Mayou, D., Li, T., Hass, J., Marchenkov, A.N., Conrad, E.H., First, P.N., and de Heer, W.A.: Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191 (2006).Google Scholar
Hass, J., de Heer, W.A., and Conrad, E.H.: The growth and morphology of epitaxial multilayer graphene. J. Phys.: Condens. Matter 20, 323202 (2008).Google Scholar
First, P.N., de Heer, W.A., Seyller, T., Berger, C., Stroscio, J.A., and Moon, J.-S.: Epitaxial graphenes on silicon carbide. MRS Bull. 35, 296 (2010).Google Scholar
Zan, R., Ramasse, Q.M., Jalil, R., and Bangert, U.: Atomic structure of graphene and h-BN layers and their interactions with metals. In Adv. Graphene Sci. (INTECH, 2013).Google Scholar
Bai, H., Li, C., and Shi, G.: Functional composite materials based on chemically converted graphene. Adv. Mater. 23, 1089 (2011).Google Scholar
Marques, P., Gonçalves, G., Cruz, S., Almeida, N., Singh, M., Grácio, J., and Sousa, A.: Functionalized graphene nanocomposites. In Adv. Nanocomposite Tech., Hashim, A., ed. (INTECH, 2011).Google Scholar
Sutter, P.W., Flege, J-I., and Sutter, E.A.: Epitaxial graphene on ruthenium. Nat. Mater. 7, 406 (2008).Google Scholar
Kumar, A., and Lee, C. H.: Synthesis and Biomedical Applications of Graphene: Present and Future Trends. In Adv. Graphene Sci., Aliofkhazraei, M., ed. (INTECH, 2013).Google Scholar
Losurdo, M., Giangregorio, M.M., Capezzuto, P., and Bruno, G.: Graphene CVD growth on copper and nickel: Role of hydrogen in kinetics and structure. Phys. Chem. Chem. Phys. 13, 20836 (2011).Google Scholar
Zhou, H.L., Yu, W.J., Liu, L.X., Cheng, R., Chen, Y., Huang, X.Q., Liu, Y., Wang, Y., Huang, Y., and Duan, X.F.: Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene. Nat. Commun. 4, 2096 (2013).Google Scholar
Huang, L., Chang, Q.H., Guo, G.L., Liu, Y., Xie, Y.Q., Wang, T., Ling, B., and Yang, H.F.: Synthesis of high-quality graphene films on nickel foils by rapid thermal chemical vapor deposition. Carbon 50, 551556 (2012).Google Scholar
Zhang, Y., Ma, M., Yang, J., Huang, W., and Dong, X.: Graphene-based three-dimensional hierarchical sandwich-type architecture for high performance supercapacitors. RSC Adv. 4, 8466 (2014).Google Scholar
Yang, S.Y., Oh, J.G., Jung, D.Y., Choi, H., Yu, C.H., Shin, J., Choi, C.-G., Cho, B.J., and Choi, S.-Y.: Metal-etching-free direct delamination and transfer of single-layer graphene with a high degree of freedom. Small 11, 175 (2015).Google Scholar
Regan, W., Alem, N., Aleman, B., Geng, B., Girit, C., Maserati, L., Wang, F., Crommie, M., and Zettl, A.: A direct transfer of layer-area graphene. Appl. Phys. Lett. 96, 113102 (2010).Google Scholar
Zaretski, A.V., Moetazedi, H., Kong, C., Sawyer, E.J., Savagatrup, S., Valle, E., O'Connor, T.F., Printz, A.D., and Lipomi, D.J.: Metal-assisted exfoliation (MAE): Green, roll-to-roll compatible method for transferring graphene to flexible substrates. Nanotechnology 26, 045301 (2015).Google Scholar
Brownson, D.A.C., Kampouris, D.K., and Banks, C.E.: Graphene electrochemistry: Fundamental concepts through to prominent applications. Chem. Soc. Rev. 41, 6944 (2012).Google Scholar
Badhulika, S., Terse-Thakoor, T., Chaves Villarreal, C.M., and Mulchandani, A.: Graphene hybrids: Synthesis strategies and applications in sensors and sensitized solar cells. Front. Chem. 3, 38 (2015).Google Scholar
Yang, X., Dou, X., Rouhanipour, A., Zhi, L., Raeder, H.J., and Muellen, K.: Two-dimensional graphene nanoribbons. J. Am. Chem. Soc. 130(13), 4216 (2008).Google Scholar
Han, M.Y., Oezyilmaz, B., Zhang, Y., and Kim, P.: Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).Google Scholar
Cai, J., Ruffieux, P., Jaafar, R., Bieri, M., Braun, T., Blankenburg, S., Muoth, M., Seitsonen, A.P., Saleh, M., Feng, X., Muellen, K., and Fasel, R.: Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470473 (2010).Google Scholar
Kosynkin, D.V., Higginbotham, A.L., Sinitskii, A., Lomeda, J.R., Dimiev, A., Price, B.K., and Tour, J.M.: Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872 (2009).Google Scholar
Jiao, L., Zhang, L., Wang, X., Diankov, G., and Dai, H.: Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877 (2009).Google Scholar
Sarkar, D., Liu, W., Xie, X., Anselmo, A.C., Mitragotri, S., and Banerjee, K.: MoS2 field-effect transistor for next-generation label-free biosensors. ACS Nano 8, 3992 (2014).Google Scholar
Jiao, L., Wang, X., Diankov, G., Wang, H., and Dai, H.: Facile synthesis of high-quality graphene nanoribbons. Nat. Nanotechnol. 5, 321 (2010).Google Scholar
Wang, X., Ouyang, Y., Jiao, L., Wang, H., Xie, L., Wu, J., Guo, J., and Dai, H.: Graphene nanoribbons with smooth edges behave as quantum wires. Nat. Nanotechnol. 6, 563 (2011).Google Scholar
Shinde, D.B., Debgupta, J., Kushwaha, A., Aslam, M., and Pillai, V.K.: Electrochemical unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons. J. Am. Chem. Soc. 133, 4168 (2011).Google Scholar
Wu, Y.H., Qiao, P.W., Chong, T.C., and Shen, Z.X.: Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition. Adv. Mater. 14, 64 (2002).Google Scholar
Suzuki, S., Chatterjee, A., Cheng, C-L., and Yoshimura, M.: Effect of hydrogen on carbon nanowall growth by microwave plasma-enhanced chemical vapor deposition. Jpn. J. Appl. Phys. 50, 01AF08 (2011).Google Scholar
Tanaka, K., Yoshimura, M., Okamoto, A., and Ueda, K.: Growth of carbon nanowalls on a SiO2 substrate by microwave plasma-enhanced chemical vapor deposition. Jpn. J. Appl. Phys., Part 1 44, 2074 (2005).Google Scholar
Shang, N.G., Papakonstantinou, P., McMullan, M., Chu, M., Stamboulis, A., Potenza, A., Dhesi, S.S., and Marchetto, H.: Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Adv. Funct. Mater. 18, 3506 (2008).CrossRefGoogle Scholar
Davami, K., Shaygan, M., Kheirabi, N., Zhao, J., Kovalenko, D.A., Ruemmeli, M.H., Opitz, J., Cuniberti, G., Lee, J.-S., and Meyyappan, M.: Synthesis and characterization of carbon nanowalls on different substrates by radio frequency plasma enhanced chemical vapor deposition. Carbon 72, 372 (2014).Google Scholar
Jain, H.G., Karacuban, H., Krix, D., Becker, H.-W., Nienhaus, H., and Buck, V.: Carbon nanowalls deposited by inductively coupled plasma enhanced chemical vapor deposition using aluminum acetylacetonate as precursor. Carbon 49, 4987 (2011).Google Scholar
Kondo, S., Hori, M., Yamakawa, K., Den, S., Kano, H., and Hiramatsu, M.: Highly reliable growth process of carbon nanowalls using radical injection plasma-enhanced chemical vapor deposition. J. Vac. Sci. Technol., A 26, 1294 (2008).Google Scholar
Hiramatsu, M., Shiji, K., Amano, H., and Hori, M.: Fabrication of vertically aligned carbon nanowalls using capacitively coupled plasma-enhanced chemical vapor deposition assisted by hydrogen radical injection. Appl. Phys. Lett. 84, 4708 (2004).Google Scholar
Kim, S.Y., Joung, Y.H., and Choi, W.S.: Growth properties of carbon nanowalls on glass substrates by a microwave plasma-enhanced chemical vapor deposition. Jpn. J. Appl. Phys. 53, 05FD09 (2014).Google Scholar
Fang, J., Levchenko, I., Kumar, S., Seo, D., and Ostrikov, K.: Vertically-aligned graphene flakes on nanoporous templates: Morphology, thickness, and defect level control by pre-treatment. Sci. Technol. Adv. Mater. 15, 055009 (2014).Google Scholar
Kumar Roy, P., Ganguly, A., Yang, W.-H., Wu, C.-T., Hwang, J.-S., Tai, Y., Chen, K.-H., Chen, L.-C., and Chattopadhyay, S.: Edge promoted ultrasensitive electrochemical detection of organic bio-molecules on epitaxial graphene nanowalls. Biosens. Bioelectron. 70, 137 (2015).Google Scholar
Akhavan, O., Ghaderi, E., and Rahighi, R.: Toward single-DNA electrochemical biosensing by graphene nanowalls. ACS Nano 6, 2904 (2012).Google Scholar
Akhavan, O., Ghaderi, E., Hashemi, E., and Rahighi, R.: Ultra-sensitive detection of leukemia by graphene. Nanoscale 6, 14810 (2014).Google Scholar
Yang, T., Guan, Q., Meng, L., Yang, R., Li, Q., and Jiao, K.: A simple preparation method for large-area, wavy graphene oxide nanowalls and their application to freely switchable impedimetric DNA detection. RSC Adv. 3, 22430 (2013).Google Scholar
Dong, X., Long, Q., Wang, J., Chan-Park, M.B., Huang, Y., Huang, W., and Chen, P.: A graphene nanoribbon network and its biosensing application. Nanoscale 3, 5156 (2011).CrossRefGoogle ScholarPubMed
Hu, Y., Li, F., Bai, X., Li, D., Hua, S., Wang, K., and Niu, L.: Label-free electrochemical impedance sensing of DNA hybridization based on functionalized graphene sheets. Chem. Commun. 47, 1743 (2011).Google Scholar
Hu, Y., Li, F., Han, D., Wu, T., Zhang, Q., Niu, L., and Bao, Y.: Simple and label-free electrochemical assay for signal-on DNA hybridization directly at undecorated graphene oxide. Anal. Chim. Acta 753, 82 (2012).Google Scholar
Singh, A., Sinsinbar, G., Choudhary, M., Kumar, V., Pasricha, R., Verma, H.N., Singh, S.P., and Arora, K.: Graphene oxide-chitosan nanocomposite based electrochemical DNA biosensor for detection of typhoid. Sens. Actuators, B 185, 675 (2013).Google Scholar
Qiu, Y., Qu, X., Dong, J., Ai, S., and Han, R.: Electrochemical detection of DNA damage induced by acrylamide and its metabolite at the graphene-ionic liquid-Nafion modified pyrolytic graphite electrode. J. Hazard. Mater. 190, 480 (2011).Google Scholar
Giovanni, M., Bonanni, A., and Pumera, M.: Detection of DNA hybridization on chemically modified graphene platforms. Analyst 137, 580 (2012).Google Scholar
Haque, A-M.J., Park, H., Sung, D., Jon, S., Choi, S.-Y., and Kim, K.: An electrochemically reduced graphene oxide-based electrochemical immunosensing platform for ultrasensitive antigen detection. Anal. Chem. 84, 1871 (2012).Google Scholar
Truong, T.N.: Development of label-free impedimetric Hcg-immunosensor using screen-printed electrode. J. Biosens. Bioelectron. 2(3), 1000107 (2011).Google Scholar
Kim, D-J., Sohn, I.Y., Jung, J.-H., Yoon, O.J., Lee, N.E., and Park, J.-S.: Reduced graphene oxide field-effect transistor for label-free femtomolar protein detection. Biosens. Bioelectron. 41, 621 (2013).Google Scholar
Zhang, Y.Z., Liu, T., Meng, B., Li, X.H., Liang, G.Z., Hu, X.N., and Wang, Q.J.: Broadband high photoresponse from pure monolayer graphene photodetector. Nat. Commun. 4, 1811 (2013).Google Scholar
Dong, X., Shi, Y., Huang, W., Chen, P., and Li, L-J.: Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Adv. Mater. 22, 1649 (2010).Google Scholar
Lin, C-T., Phan Thi Kim, L., Chen, T.-Y., Liu, K.-K., Chen, C.-H., Wei, K.-H., and Li, L.-J.: Label-free electrical detection of DNA hybridization on graphene using Hall effect measurements: Revisiting the sensing mechanism. Adv. Funct. Mater. 23, 2301 (2013).Google Scholar
Gong, Q., Yang, H., Dong, Y., and Zhang, W.: A sensitive impedimetric DNA biosensor for the determination of the HIV gene based on electrochemically reduced graphene oxide. Anal. Methods 7, 2554 (2015).Google Scholar
Feng, L., Chen, Y., Ren, J., and Qu, X.: A graphene functionalized electrochemical aptasensor for selective label-free detection of cancer cells. Biomaterials 32, 2930 (2011).Google Scholar
Huang, Y., Dong, X., Liu, Y., Li, L-J., and Chen, P.: Graphene-based biosensors for detection of bacteria and their metabolic activities. J. Mater. Chem. 21, 12358 (2011).Google Scholar
Liao, J.C., Mastali, M., Li, Y., Gau, V., Suchard, M.A., Babbitt, J., Gornbein, J., Landaw, E.M., McCabe, E.R.B., Churchill, B.M., and Haake, D.A.: Development of an advanced electrochemical DNA biosensor for bacterial pathogen detection. J. Mol. Diagn. 9, 158 (2007).Google Scholar
Lucarelli, F., Marrazza, G., Turner, A.P.F., and Mascini, M.: Carbon and gold electrodes as electrochemical transducers for DNA hybridisation sensors. Biosens. Bioelectron. 19, 515 (2004).Google Scholar
Liao, J.C., Mastali, M., Gau, V., Suchard, M.A., Moller, A.K., Bruckner, D.A., Babbitt, J.T., Li, Y., Gornbein, J., Landaw, E.M., McCabe, E.R.B., Churchill, B.M., and Haake, D.A.: Use of electrochemical DNA biosensors for rapid molecular identification of uropathogens in clinical urine specimens. J. Clin. Microbiol. 44, 561 (2006).Google Scholar
Drummond, T.G., Hill, M.G., and Barton, J.K.: Electrochemical DNA sensors. Nat. Biotechnol. 21, 1192 (2003).Google Scholar
Oliveira, S.C.B. and Oliveira-Brett, A.M.: DNA-electrochemical biosensors: AFM surface characterisation and application to detection of in situ oxidative damage to DNA. Comb. Chem. High Throughput Screening 13, 628 (2010).Google Scholar
Palecek, E., Fojta, M., Tomschik, M., and Wang, J.: Electrochemical biosensors for DNA hybridization and DNA damage. Biosens. Bioelectron. 13, 621 (1998).Google Scholar
Wang, J.: From DNA biosensors to gene chips. Nucleic Acids Res. 28, 3011 (2000).Google Scholar
Akca, S., Foroughi, A., Frochtzwajg, D., and Postma, H.W.C.: Competing interactions in DNA assembly on graphene. PLoS One 6(4), e18442 (2011).Google Scholar
Bonanni, A. and Pumera, M.: Graphene platform for hairpin-DNA-based impedimetric genosensing. ACS Nano 5, 2356 (2011).Google Scholar
Esteban-Fernandez de Avila, B., Araque, E., Campuzano, S., Pedrero, M., Dalkiran, B., Barderas, R., Villalonga, R., Kilic, E., and Pingarron, J.M.: Dual functional graphene derivative-based electrochemical platforms for detection of the TP53 gene with single nucleotide polymorphism selectivity in biological samples. Anal. Chem. 87, 2290 (2015).Google Scholar
Lim, C.X., Hoh, H.Y., Ang, P.K., and Loh, K.P.: Direct voltammetric detection of DNA and pH sensing on epitaxial graphene: An insight into the role of oxygenated defects. Anal. Chem. 82, 7387 (2010).Google Scholar
Mohanty, N. and Berry, V.: Graphene-based single-bacterium resolution biodevice and DNA transistor: Interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett. 8, 4469 (2008).Google Scholar
Wang, Z., Zhang, J., Chen, P., Zhou, X., Yang, Y., Wu, S., Niu, L., Han, Y., Wang, L., Boey, F., Zhang, Q., Liedberg, B., and Zhang, H.: Label-free, electrochemical detection of methicillin-resistant Staphylococcus aureus DNA with reduced graphene oxide-modified electrodes. Biosens. Bioelectron. 26, 3881 (2011).Google Scholar
Hu, Y., Wang, K., Zhang, Q., Li, F., Wu, T., and Niu, L.: Decorated graphene sheets for label-free DNA impedance biosensing. Biomaterials 33, 1097 (2012).Google Scholar
Jia, L-P., Liu, J-F., and Wang, H-S.: Electrochemical performance and detection of 8-hydroxy-2′-deoxyguanosine at single-stranded DNA functionalized graphene modified glassy carbon electrode. Biosens. Bioelectron. 67, 139 (2015).Google Scholar
Du, M., Yang, T., Li, X., and Jiao, K.: Fabrication of DNA/graphene/polyaniline nanocomplex for label-free voltammetric detection of DNA hybridization. Talanta 88, 439 (2012).Google Scholar
Li, B., Pan, G., Avent, N.D., Lowry, R.B., Madgett, T.E., and Waines, P.L.: Graphene electrode modified with electrochemically reduced graphene oxide for label-free DNA detection. Biosens. Bioelectron. 72, 313 (2015).Google Scholar
Benvidi, A., Rajabzadeh, N., Mazloum-Ardakani, M., Heidari, M.M., and Mulchandani, A.: Simple and label-free electrochemical impedance Amelogenin gene hybridization biosensing based on reduced graphene oxide. Biosens. Bioelectron. 58, 145 (2014).Google Scholar
Akhavan, O., Ghaderi, E., Rahighi, R., and Abdolahad, M.: Spongy graphene electrode in electrochemical detection of leukemia at single-cell levels. Carbon 79, 654 (2014).Google Scholar
Gong, Q.J., Wang, Y.D., and Yang, H.Y.: A sensitive impedimetric DNA biosensor for the determination of the HIV gene based on graphene-Nafion composite film. Biosens. Bioelectron. 89, 565 (2017).Google Scholar
Seidel, A., Brunner, S., Seidel, P., Fritz, G.I., and Herbarth, O.: Modified nucleosides: An accurate tumour marker for clinical diagnosis of cancer, early detection and therapy control. Br. J. Cancer 94, 1726 (2006).Google Scholar
Borek, E., Sharma, O.K., Buschman, F.L., Cohn, D.L., Penley, K.A., Judson, F.N., Dobozin, B.S., Horsburgh, C.R., and Kirkpatrick, C.H.: Altered excretion of modified nucleosides and beta-aminoisobutyric acid in subjects with acquired-immunodeficiency-syndrome or at risk for acquired-immunodeficiency-syndrome. Cancer Res. 46, 2557 (1986).Google Scholar
Huang, K-J., Niu, D.-J., Sun, J.-Y., Han, C.-H., Wu, Z.-W., Li, Y.-L., and Xiong, X.-Q.: Novel electrochemical sensor based on functionalized graphene for simultaneous determination of adenine and guanine in DNA. Colloids Surf., B 82, 543 (2011).Google Scholar
Xie, Y., Chen, A., Du, D., and Lin, Y.: Graphene-based immunosensor for electrochemical quantification of phosphorylated p53 (S15). Anal. Chim. Acta 699, 44 (2011).Google Scholar
Du, D., Wang, L., Shao, Y., Wang, J., Engelhard, M.H., and Lin, Y.: Functionalized graphene oxide as a nanocarrier in a multienzyme labeling amplification strategy for ultrasensitive electrochemical immunoassay of phosphorylated p53 (S392). Anal. Chem. 83, 746 (2011).Google Scholar
Chen, X., Jia, X., Han, J., Ma, J., and Ma, Z.: Electrochemical immunosensor for simultaneous detection of multiplex cancer biomarkers based on graphene nanocomposites. Biosens. Bioelectron. 50, 356 (2013).Google Scholar
Tuteja, S.K., Kukkar, M., Suri, C.R., Paul, A.K., and Deep, A.: One step in situ synthesis of amine functionalized graphene for immunosensing of cardiac marker cTnI. Biosens. Bioelectron. 66, 129 (2015).Google Scholar
Yuan, G., Yu, C., Xia, C., Gao, L., Xu, W., Li, W., and He, J.: A simultaneous electrochemical multianalyte immunoassay of high sensitivity C-reactive protein and soluble CD40 ligand based on reduced graphene oxide-tetraethylene pentamine that directly adsorb metal ions as labels. Biosens. Bioelectron. 72, 237 (2015).Google Scholar
Liu, J., Wang, J., Wang, T., Li, D., Xi, F., Wang, J., and Wang, E.: Three-dimensional electrochemical immunosensor for sensitive detection of carcinoembryonic antigen based on monolithic and macroporous graphene foam. Biosens. Bioelectron. 65, 281 (2015).Google Scholar
Li, P., Zhang, B., and Cui, T.: Towards intrinsic graphene biosensor: A label-free, suspended single crystalline graphene sensor for multiplex lung cancer tumor markers detection. Biosens. Bioelectron. 72, 168 (2015).Google Scholar
Singal, S., Srivastava, A.K., Biradar, A.M., Mulchandani, A., and Rajesh: Pt nanoparticles-chemical vapor deposited graphene composite based immunosensor for the detection of human cardiac troponin I. Sens. Actuators, B 205, 363 (2014).Google Scholar
Singal, S., Biradar, A.M., Mulchandani, A., and Rajesh: Ultrasensitive electrochemical immunosensor based on Pt nanoparticle–graphene composite. Appl. Biochem. Biotechnol. 174, 971 (2014).Google Scholar
Ahour, F. and Ahsani, M.K.: An electrochemical label-free and sensitive thrombin aptasensor based on graphene oxide modified pencil graphite electrode. Biosens. Bioelectron. 86, 764 (2016).Google Scholar
Zhou, L., Mao, H.J., Wu, C.Y., Tang, L., Wu, Z.H., Sun, H., Zhang, H.L., Zhou, H.B., Jia, C.P., Jin, Q.H., Chen, X.F., and Zhao, J.L.: Label-free graphene biosensor targeting cancer molecules based on non-covalent modification. Biosens. Bioelectron. 87, 701 (2017).Google Scholar
Saleem, W., Salinas, C., Watkins, B., Garvey, G., Sharma, A.C., and Ghosh, R.: Antibody functionalized graphene biosensor for label-free electrochemical immunosensing of fibrinogen, an indicator of trauma induced coagulopathy. Biosens. Bioelectron. 86, 522 (2016).Google Scholar
Harris, M.: Classification and diagnosis of diabetes-mellitus and other categories of glucose-intolerance. Diabetes 28, 1039 (1979).Google Scholar
Mohandas, R. and Johnson, R.J.: Uric acid levels increase risk for new-onset kidney disease. J. Am. Soc. Nephrol. 19, 2251 (2008).Google Scholar
Wightman, R.M., May, L.J., and Michael, A.C.: Detection of dopamine dynamics in the brain. Anal. Chem. 60, A769 (1988).Google Scholar
Wu, P., Shao, Q., Hu, Y., Jin, J., Yin, Y., Zhang, H., and Cai, C.: Direct electrochemistry of glucose oxidase assembled on graphene and application to glucose detection. Electrochim. Acta 55, 8606 (2010).Google Scholar
Xinhuang, K., Jun, W., Hong, W., Aksay, I.A., Jun, L., and Yuehe, L.: Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens. Bioelectron. 25, 901 (2009).Google Scholar
Zhang, Q., Wu, S., Zhang, L., Lu, J., Verproot, F., Liu, Y., Xing, Z., Li, J., and Song, X.-M.: Fabrication of polymeric ionic liquid/graphene nanocomposite for glucose oxidase immobilization and direct electrochemistry. J. Biosens. Bioelectron. 26, 2632 (2011).Google Scholar
Fu, C., Yang, W., Chen, X., and Evans, D.G.: Direct electrochemistry of glucose oxidase on a graphite nanosheet-Nafion composite film modified electrode. Electrochem. Commun. 11, 997 (2009).Google Scholar
Alwarappan, S., Singh, S.R., Pillai, S., Kumar, A., and Mohapatra, S.: Direct electrochemistry of glucose oxidase at a gold electrode modified with graphene nanosheets. Anal. Lett. 45, 746 (2012).Google Scholar
Shan, C., Yang, H., Song, J., Han, D., Ivaska, A., and Niu, L.: Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal. Chem. 81, 2378 (2009).Google Scholar
Unnikrishnan, B., Palanisamy, S., and Chen, S-M.: A simple electrochemical approach to fabricate a glucose biosensor based on graphene–glucose oxidase biocomposite. Biosens. Bioelectron. 39, 70 (2013).Google Scholar
Xueqiu, Y. and Pak, J.J.: Graphene-based field effect transistor enzymatic glucose biosensor using silk protein for enzyme immobilization and device substrate. Sens. Actuators, B 202, 1357 (2014).Google Scholar
Kwak, Y.H., Choi, D.S., Kim, Y.N., Kim, H., Yoon, D.H., Ahn, S.-S., Yang, J.-W., Yang, W.S., and Seo, S.: Flexible glucose sensor using CVD-grown graphene-based field effect transistor. Biosens. Bioelectron. 37, 82 (2012).Google Scholar
Lian, H., Sun, Z., Sun, X., and Liu, B.: Graphene doped molecularly imprinted electrochemical sensor for uric acid. Anal. Lett. 45, 2717 (2012).Google Scholar
Kim, Y-R., Bong, S., Kang, Y.-J., Yang, Y., Mahajan, R.K., Kim, J.S., and Kim, H.: Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosens. Bioelectron. 25, 2366 (2010).Google Scholar
Mallesha, M., Manjunatha, R., Nethravathi, C., Suresh, G.S., Rajamathi, M., Melo, J.S., and Venkatesha, T.V.: Functionalized-graphene modified graphite electrode for the selective determination of dopamine in presence of uric acid and ascorbic acid. Bioelectrochemistry 81, 104 (2011).Google Scholar
Yu, Y., Chen, Z., Zhang, B., Li, X., and Pan, J.: Selective and sensitive determination of uric acid in the presence of ascorbic acid and dopamine by PDDA functionalized graphene/graphite composite electrode. Talanta 112, 31 (2013).Google Scholar
Wang, Y., Li, Y., Tang, L., Lu, J., and Li, J.: Application of graphene-modified electrode for selective detection of dopamine. Electrochem. Commun. 11, 889 (2009).Google Scholar
Zhu, X., Liu, Q., Zhu, X., Li, C., Xu, M., and Liang, Y.: Reduction of graphene oxide via ascorbic acid and its application for simultaneous detection of dopamine and ascorbic acid. Int. J. Electrochem. Sci. 7, 5172 (2012).Google Scholar
Chao, M., Ma, X., and Li, X.: Graphene-modified electrode for the selective determination of uric acid under coexistence of dopamine and ascorbic acid. Int. J. Electrochem. Sci. 7, 2201 (2012).Google Scholar
Heinecke, J.W.: Oxidative stress: New approaches to diagnosis and prognosis in atherosclerosis. Am. J. Cardiol. 91, 12A (2003).Google Scholar
Sosa, V., Moline, T., Somoza, R., Paciucci, R., Kondoh, H., and Lleonart, M.E.: Oxidative stress and cancer: An overview. Ageing Res. Rev. 12, 376 (2013).Google Scholar
Sharma, R.K., Pasqualotto, F.F., Nelson, D.R., Thomas, A.J., and Agarwal, A.: The reactive oxygen species—Total antioxidant capacity score is a new measure of oxidative stress to predict male infertility. Hum. Reprod. 14, 2801 (1999).Google Scholar
Xu, H., Dai, H., and Chen, G.: Direct electrochemistry and electrocatalysis of hemoglobin protein entrapped in graphene and chitosan composite film. Talanta 81, 334 (2010).Google Scholar
Zhou, Y., Liu, S., Jiang, H-J., Yang, H., and Chen, H-Y.: Direct electrochemistry and bioelectrocatalysis of microperoxidase-11 immobilized on chitosan–graphene nanocomposite. Electroanalysis 22, 1323 (2010).Google Scholar
Lu, Q., Dong, X., Li, L-J., and Hu, X.: Direct electrochemistry-based hydrogen peroxide biosensor formed from single-layer graphene nanoplatelet–enzyme composite film. Talanta 82, 1344 (2010).Google Scholar
Komori, K., Terse-Thakoor, T., and Mulchandani, A.: Bioelectrochemistry of heme peptide at seamless three-dimensional carbon nanotubes/graphene hybrid films for highly sensitive electrochemical biosensing. ACS Appl. Mater. Interfaces 7, 3647 (2015).Google Scholar
Wei, J., Qiu, J., Li, L., Ren, L., Zhang, X., Chaudhuri, J., and Wang, S.: A reduced graphene oxide based electrochemical biosensor for tyrosine detection. Nanotechnology 23(33), 335707 (2012).Google Scholar
Valentini, F., Romanazzo, D., Carbone, M., and Palleschi, G.: Modified screen-printed electrodes based on oxidized graphene nanoribbons for the selective electrochemical detection of several molecules. Electroanalysis 24, 872 (2012).Google Scholar
Zhang, Q., Qiao, Y., Zhang, L., Wu, S., Zhou, H., Xu, J., and Song, X.-M.: Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized on water soluble sulfonated graphene film via self-assembly. Electroanalysis 23, 900 (2011).Google Scholar
Manjunatha, R., Suresh, G.S., Melo, J.S., D’Souza, S.F., and Venkatesha, T.V.: An amperometric bienzymatic cholesterol biosensor based on functionalized graphene modified electrode and its electrocatalytic activity towards total cholesterol determination. Talanta 99, 302 (2012).Google Scholar
Balamurugan, T. and Berchmans, S.: Non-enzymatic detection of bilirubin based on a graphene–polystyrene sulfonate composite. RSC Adv. 5, 50470 (2015).Google Scholar
Wang, Y-L. and Zhao, G-C.: Electrochemical sensing of nitric oxide on electrochemically reduced graphene-modified electrode. Int. J. Electrochem. 2011, 482780 (2011).Google Scholar
Tu, D.D., He, Y., Rong, Y.Z., Wang, Y., and Li, G.: Disposable L-lactate biosensor based on a screen-printed carbon electrode enhanced by graphene. Meas. Sci. Technol. 27, 045108 (2016).Google Scholar
Vijayaraj, K., Hong, S.W., Jin, S.H., Chang, S.C., and Park, D.S.: Fabrication of a novel disposable glucose biosensor using an electrochemically reduced graphene oxide–glucose oxidase biocomposite. Anal. Methods 8, 6974 (2016).Google Scholar
Liu, F., Choi, K.S., Park, T.J., Lee, S.Y., and Seo, T.S.: Graphene-based electrochemical biosensor for pathogenic virus detection. BioChip J. 5, 123 (2011).Google Scholar
Liu, F., Kim, Y.H., Cheon, D.S., and Seo, T.S.: Micropatterned reduced graphene oxide based field-effect transistor for real-time virus detection. Sens. Actuators, B 186, 252 (2013).Google Scholar
Wang, Q., Su, J., Xu, J., Xiang, Y., Yuan, R., and Chai, Y.: Dual amplified, sensitive electrochemical detection of pathogenic sequences based on biobarcode labels and functional graphene modified electrode. Sens. Actuators, B 163, 267 (2012).Google Scholar
Mannoor, M.S., Tao, H., Clayton, J.D., Sengupta, A., Kaplan, D.L., Naik, R.R., Verma, N., Omenetto, F.G., and McAlpine, M.C.: Graphene-based wireless bacteria detection on tooth enamel. Nat. Commun. 3, 763 (2012).Google Scholar
Chan, C-Y., Guo, J., Sun, C., Tsang, M.-K., Tian, F., Hao, J., Chen, S., and Yang, M.: A reduced graphene oxide-Au based electrochemical biosensor for ultrasensitive detection of enzymatic activity of botulinum neurotoxin A. Sens. Actuators, B 220, 131 (2015).Google Scholar
Wan, Y., Lin, Z., Zhang, D., Wang, Y., and Hou, B.: Impedimetric immunosensor doped with reduced graphene sheets fabricated by controllable electrodeposition for the non-labelled detection of bacteria. Biosens. Bioelectron. 26, 1959 (2011).Google Scholar
Xiang, L.C., Wang, Z., Liu, Z.H., Weigum, S.N.E., Yu, Q.K., and Chen, M.Y.: Inkjet-printed flexible biosensor based on graphene field effect transistor. IEEE Sens. J. 16, 8359 (2016).Google Scholar
Karapetis, S., Nikoleli, G.P., Siontorou, C.G., Nikolelis, D.P., Tzamtzis, N., and Psaroudakis, N.: Development of an electrochemical biosensor for the rapid detection of cholera toxin based on air stable lipid films with incorporated ganglioside GM1 using graphene electrodes. Electroanalysis 28, 1584 (2016).Google Scholar
Basu, J. and RoyChaudhuri, C.: Attomolar sensitivity of FET biosensor based on smooth and reliable graphene nanogrids. IEEE Electron Device Lett. 37, 492 (2016).Google Scholar