Skip to main content
×
×
Home

Graphene synthesis and application for solar cells

  • Santanu Das (a1), Pitchaimuthu Sudhagar (a2), Yong Soo Kang (a2) and Wonbong Choi (a3)
Abstract

To date graphene and graphene-derived materials have created an immense research interests due to its extraordinary physical, chemical, and physiochemical properties, which delineated graphene as an outstanding material for future electronics, optics, and energy-harvesting devices. Typically, graphene has high mobility and optical transparency along with excellent mechanical properties and chemical inertness. Single-layer graphene exhibits ultrahigh optical transmissivity (∼98%), which allows passing through wide range of light wave lengths, thus designated as an ever-reported material for an optically conducting window. Furthermore, graphene's optical, electrical, and electrocatalytic properties can be tuned by applying different chemical functionalization protocols, which make it one of the most suitable candidates for advanced applications in optoelectronic and energy-harvesting devices. This review is intended to summarize the most important experimental results from the recent publications concerning the fascinating properties of graphene electrodes and their applications in various types of solar cells. Furthermore, the state of the art of different graphene synthesis processes and functionalization for the applications in solar cells are also discussed in this review.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Graphene synthesis and application for solar cells
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Graphene synthesis and application for solar cells
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Graphene synthesis and application for solar cells
      Available formats
      ×
Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: Wonbong.Choi@unt.edu
References
Hide All
1. Balandin, A.A.: Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569581 (2011).
2. Geim, A.K. and Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183191 (2007).
3. Das, S. and Choi, W.: Graphene synthesis. In Graphene: Synthesis and Applications, Vol. 3, 1st ed.; Choi, W. and Lee, J-W. eds.; Taylor & Francis Group: Boca Raton, FL, 2011; pp. 2763.
4. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666669 (2004).
5. Viculis, L.M., Mack, J.J., and Kaner, R.B.: A chemical route to carbon nanoscrolls. Science 299, 1361 (2003).
6. Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z.Y., De, S., McGovern, I.T., Holland, B., Byrne, M., Gun'ko, Y.K., Boland, J.J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, A.C., and Coleman, J.N.: High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3, 563568 (2008).
7. Hummers, W.S. and Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).
8. Li, S.S., Tu, K.H., Lin, C.C., Chen, C.W., and Chhowalla, M.: Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. ACS Nano 4, 31693174 (2010).
9. Hasin, P., Alpuche-Aviles, M.A., and Wu, Y.Y.: Electrocatalytic activity of graphene multi layers toward I/I3 : Effect of preparation conditions and polyelectrolyte modification. J. Phys. Chem. C 114, 1585715861 (2010).
10. Roy-Mayhew, J.D., Bozym, D.J., Punckt, C., and Aksay, I.A.: Functionalized graphene as a catalytic counter electrode in dye-sensitized solar cells. ACS Nano 4, 62036211 (2010).
11. Li, G.L., Liu, G., Li, M., Wan, D., Neoh, K.G., and Kang, E.T.: Organo- and water-dispersible graphene oxide-polymer nanosheets for organic electronic memory and gold nanocomposites. J. Phys. Chem. C 114, 1274212748 (2010).
12. Chen, S.Q. and Wang, Y.: Microwave-assisted synthesis of a Co3O4-graphene sheet-on-sheet nanocomposite as a superior anode material for Li-ion batteries. J. Mater. Chem. 20, 97359739 (2010).
13. Wintterlin, J. and Bocquet, M.L.: Graphene on metal surfaces. Surf. Sci. 603, 18411852 (2009).
14. Wassei, J.K., Mecklenburg, M., Torres, J.A., Fowler, J.D., Regan, B.C., Kaner, R.B., and Weiller, B.H.: Chemical vapor deposition of graphene on copper from methane, ethane and propane: Evidence for bilayer selectivity. Small 8, 14151422 (2012).
15. Berger, C., Song, Z.M., Li, T.B., Li, X.B., Ogbazghi, A.Y., Feng, R., Dai, Z.T., Marchenkov, A.N., Conrad, E.H., First, P.N., and de Heer, W.A.: Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 1991219916 (2004).
16. Hupalo, M., Conrad, E.H., and Tringides, M.C.: Growth mechanism for epitaxial graphene on vicinal 6H-SiC(0001) surfaces: A scanning tunneling microscopy study. Phys. Rev. B 80, 4 (2009).
17. Emtsev, K.V., Bostwick, A., Horn, K., Jobst, J., Kellogg, G.L., Ley, L., McChesney, J.L., Ohta, T., Reshanov, S.A., Rohrl, J., Rotenberg, E., Schmid, A.K., Waldmann, D., Weber, H.B., and Seyller, T.: Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 8, 203207 (2009).
18. de Heer, W.A., Berger, C., Wu, X.S., First, P.N., Conrad, E.H., Li, X.B., Li, T.B., Sprinkle, M., Hass, J., Sadowski, M.L., Potemski, M., and Martinez, G.: Epitaxial graphene. Solid State Commun. 143, 92100 (2007).
19. Kymakis, E., Stratakis, E., Stylianakis, M.M., Koudoumas, E., and Fotakis, C.: Spin coated graphene films as the transparent electrode in organic photovoltaic devices. Thin Solid Films 520, 12381241 (2011).
20. Becerril, H.A., Mao, J., Liu, Z., Stoltenberg, R.M., Bao, Z., and Chen, Y.: Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2, 463470 (2008).
21. Wang, X., Zhi, L.J., and Mullen, K.: Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8, 323327 (2008).
22. Chavez-Valdez, A., Shaffer, M.S.P., and Boccaccini, A.R.: Applications of graphene electrophoretic deposition. A review. J. Phys. Chem. B 117, 15021515 (2013).
23. Eda, G., Lin, Y-Y., Miller, S., Chen, C-W., Su, W-F., and Chhowalla, M.: Transparent and conducting electrodes for organic electronics from reduced graphene oxide. Appl. Phys. Lett. 92, 233305233313 (2008).
24. Li, D., Muller, M.B., Gilje, S., Kaner, R.B., and Wallace, G.G.: Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101105 (2008).
25. Cote, L.J., Kim, F., and Huang, J.: Langmuir−blodgett assembly of graphite oxide single layers. J. Am. Chem. Soc. 131, 10431049 (2008).
26. Ishikawa, R., Bando, M., Wada, H., Kurokawa, Y., Sandhu, A., and Konagai, M.: Layer-by-layer assembled transparent conductive graphene films for silicon thin-film solar cells. Jpn. J. Appl. Phys. 51, 4 (2012).
27. Zhu, Y., Cai, W., Piner, R.D., Velamakanni, A., and Ruoff, R.S.: Transparent self-assembled films of reduced graphene oxide platelets. Appl. Phys. Lett. 95, 103104103113 (2009).
28. Chen, C., Yang, Q-H., Yang, Y., Lv, W., Wen, Y., Hou, P-X., Wang, M., and Cheng, H-M.: Self-assembled free-standing graphite oxide membrane. Adv. Mater. 21, 30073011 (2009).
29. Kim, J., Cote, L.J., Kim, F., Yuan, W., Shull, K.R., and Huang, J.: Graphene oxide sheets at interfaces. J. Am. Chem. Soc. 132, 81808186 (2010).
30. Li, X.S., Cai, W.W., An, J.H., Kim, S., Nah, J., Yang, D.X., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L., and Ruoff, R.S.: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 13121314 (2009).
31. Das, S., Sudhagar, P., Verma, V., Song, D., Ito, E., Lee, S.Y., Kang, Y.S., and Choi, W.: Amplifying charge-transfer characteristics of graphene for triiodide reduction in dye-sensitized solar cells. Adv. Funct. Mater. 21, 37293736 (2011).
32. Li, X., Zhang, R., Yu, W., Wang, K., Wei, J., Wu, D., Cao, A., Li, Z., Cheng, Y., Zheng, Q., Ruoff, R.S., and Zhu, H.: Stretchable and highly sensitive graphene-on-polymer strain sensors. Sci. Rep. 2, 870 (2012). doi: 10.1038/srep00870.
33. Verma, V.P., Das, S., Lahiri, I., and Choi, W.: Large-area graphene on polymer film for flexible and transparent anode in field emission device. Appl. Phys. Lett. 96, 203108 (2010). doi: 10.1063/1.3431630.
34. Wang, D.H., Kim, J.K., Seo, J.H., Park, I., Hong, B.H., Park, J.H., and Heeger, A.J.: Transferable graphene oxide by stamping nanotechnology: Electron-transport layer for efficient bulk-heterojunction solar cells. Angew. Chem. Int. Ed. 52, 28742880 (2013).
35. Bae, S., Kim, H., Lee, Y., Xu, X.F., Park, J.S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H.R., Song, Y.I., Kim, Y.J., Kim, K.S., Ozyilmaz, B., Ahn, J.H., Hong, B.H., and Iijima, S.: Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574578 (2010).
36. Chen, J-H., Jang, C., Xiao, S., Ishigami, M., and Fuhrer, M.S.: Intrinsic and extrinsic performance limits of graphene devices on SiO2 . Nat. Nanotechnol. 3, 206209 (2008).
37. Akturk, A. and Goldsman, N.: Electron transport and full-band electron-phonon interactions in graphene. J. Appl. Phys. 103, 053702053708 (2008).
38. Li, X.S., Zhu, Y.W., Cai, W.W., Borysiak, M., Han, B.Y., Chen, D., Piner, R.D., Colombo, L., and Ruoff, R.S.: Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 9, 43594363 (2009).
39. Lahiri, I., Verma, V.P., and Choi, W.: An all-graphene based transparent and flexible field emission device. Carbon 49, 16141619 (2011).
40. Li, X., Zhu, H., Wang, K., Cao, A., Wei, J., Li, C., Jia, Y., Li, Z., Li, X., and Wu, D.: Graphene-on-silicon schottky junction solar cells. Adv. Mater. 22, 27432748 (2010).
41. Ye, Y., Dai, Y., Dai, L., Shi, Z., Liu, N., Wang, F., Fu, L., Peng, R., Wen, X., Chen, Z., Liu, Z., and Qin, G.: High-performance single CdS nanowire (nanobelt) schottky junction solar cells with Au/graphene schottky electrodes. ACS Appl. Mater. Interfaces 2, 34063410 (2010).
42. Miao, X., Tongay, S., Petterson, M.K., Berke, K., Rinzler, A.G., Appleton, B.R., and Hebard, A.F.: High efficiency graphene solar cells by chemical doping. Nano Lett. 12, 27452750 (2012).
43. Tongay, S., Berke, K., Lemaitre, M., Nasrollahi, Z., Tanner, D.B., Hebard, A.F., and Appleton, B.R.: Stable hole doping of graphene for low electrical resistance and high optical transparency. Nanotechnology 22, 425701 (2011).
44. Mora-Seró, I. and Bisquert, J.: Breakthroughs in the development of semiconductor-sensitized solar cells. J. Phys. Chem. Lett. 1, 30463052 (2010).
45. Kim, J.Y., Lee, K., Coates, N.E., Moses, D., Nguyen, T-Q., Dante, M., and Heeger, A.J.: Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317, 222225 (2007).
46. Yella, A., Lee, H-W., Tsao, H.N., Yi, C., Chandiran, A.K., Nazeeruddin, M.K., Diau, E.W-G., Yeh, C-Y., Zakeeruddin, S.M., and Grätzel, M.: Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science 334, 629634 (2011).
47. Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., and Pettersson, H.: Dye-sensitized solar cells. Chem. Rev. 110, 65956663 (2010).
48. Chen, D., Zhang, H., Liu, Y., and Li, J.: Graphene and its derivatives for the development of solar cells, photoelectrochemical, and photocatalytic applications. Energy Environ. Sci. 6, 13621387 (2013).
49. Wang, H-X., Wang, Q., Zhou, K-G., and Zhang, H-L.: Graphene in light: Design, synthesis and applications of photo-active graphene and graphene-like materials. Small 9, 12661283 (2013).
50. Tu, W., Zhou, Y., and Zou, Z.: Versatile graphene-promoting photocatalytic performance of semiconductors: Basic principles, synthesis, solar energy conversion, and environmental applications. Adv. Funct. Mater. (2013). doi: 10.1002/adfm.201203547.
51. Zhang, J., Zhao, F., Zhang, Z., Chen, N., and Qu, L.: Dimension-tailored functional graphene structures for energy conversion and storage. Nanoscale 5, 31123126 (2013).
52. Kim, H.N., Yoo, H., and Moon, J.H.: Graphene-embedded 3D TiO2 inverse opal electrodes for highly efficient dye-sensitized solar cells: Morphological characteristics and photocurrent enhancement. Nanoscale 5, 42004204 (2013).
53. Gong, F., Xu, X., Zhou, G., and Wang, Z.S.: Enhanced charge transportation in a polypyrrole counter electrode via incorporation of reduced graphene oxide sheets for dye-sensitized solar cells. Phys. Chem. Chem. Phys. 15, 546552 (2013).
54. Chavez-Valdez, A., Shaffer, M.S., and Boccaccini, A.R.: Applications of graphene electrophoretic deposition. A review. J. Phys. Chem. B 117, 15021515 (2013).
55. Morales-Torres, S., Pastrana-Martinez, L.M., Figueiredo, J.L., Faria, J.L., and Silva, A.M.: Design of graphene-based TiO2 photocatalysts: A review. Environ. Sci. Pollut. Res. Int. 19, 36763687 (2012).
56. Lee, J.S., Ahn, H.J., Yoon, J.C., and Jang, J.H.: Three-dimensional nano-foam of few-layer graphene grown by CVD for DSSC. Phys. Chem. Chem. Phys. 14, 79387943 (2012).
57. Peining, Z., Nair, A.S., Shengjie, P., Shengyuan, Y., and Ramakrishna, S.: Facile fabrication of TiO2-graphene composite with enhanced photovoltaic and photocatalytic properties by electrospinning. ACS Appl. Mater. Interfaces 4, 581585 (2012).
58. Lee, K.S., Lee, Y., Lee, J.Y., Ahn, J.H., and Park, J.H.: Flexible and platinum-free dye-sensitized solar cells with conducting-polymer-coated graphene counter electrodes. ChemSusChem 5, 379382 (2012).
59. Kavan, L., Yum, J.H., and Gratzel, M.: Graphene nanoplatelets outperforming platinum as the electrocatalyst in co-bipyridine-mediated dye-sensitized solar cells. Nano Lett. 11, 55015506 (2011).
60. He, Z., Guai, G., Liu, J., Guo, C., Loo, J.S., Li, C.M., and Tan, T.T.: Nanostructure control of graphene-composited TiO2 by a one-step solvothermal approach for high performance dye-sensitized solar cells. Nanoscale 3, 46134616 (2011).
61. Kavan, L., Yum, J.H., Nazeeruddin, M.K., and Gratzel, M.: Graphene nanoplatelet cathode for Co(III)/(II) mediated dye-sensitized solar cells. ACS Nano 5, 91719178 (2011).
62. Song, J., Yin, Z., Yang, Z., Amaladass, P., Wu, S., Ye, J., Zhao, Y., Deng, W.Q., Zhang, H., and Liu, X.W.: Enhancement of photogenerated electron transport in dye-sensitized solar cells with introduction of a reduced graphene oxide-TiO2 junction. Chem. Eur. J. 17, 1083210837 (2011).
63. Bajpai, R., Roy, S., Kumar, P., Bajpai, P., Kulshrestha, N., Rafiee, J., Koratkar, N., and Misra, D.S.: Graphene supported platinum nanoparticle counter-electrode for enhanced performance of dye-sensitized solar cells. ACS Appl. Mater. Interfaces 3, 38843889 (2011).
64. Kavan, L., Yum, J.H., and Gratzel, M.: Optically transparent cathode for dye-sensitized solar cells based on graphene nanoplatelets. ACS Nano 5, 165172 (2011).
65. Roy-Mayhew, J.D., Bozym, D.J., Punckt, C., and Aksay, I.A.: Functionalized graphene as a catalytic counter electrode in dye-sensitized solar cells. ACS Nano 4, 62036211 (2010).
66. Guldi, D.M. and Sgobba, V.: Carbon nanostructures for solar energy conversion schemes. Chem. Commun. 47, 606610 (2011).
67. Wei, D.: Dye sensitized solar cells. Int. J. Mol. Sci. 11, 11031113 (2010).
68. Tang, Y.B., Lee, C.S., Xu, J., Liu, Z.T., Chen, Z.H., He, Z., Cao, Y.L., Yuan, G., Song, H., Chen, L., Luo, L., Cheng, H.M., Zhang, W.J., Bello, I., and Lee, S.T.: Incorporation of graphenes in nanostructured TiO2 films via molecular grafting for dye-sensitized solar cell application. ACS Nano 4, 34823488 (2010).
69. Yang, N., Zhai, J., Wang, D., Chen, Y., and Jiang, L.: Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. ACS Nano 4, 887894 (2010).
70. Bell, N.J., Ng, Y.H., Du, A., Coster, H., Smith, S.C., and Amal, R.: Understanding the enhancement in photoelectrochemical properties of photocatalytically prepared TiO2-reduced graphene oxide composite. J. Phys. Chem. C 115, 60046009 (2011).
71. Chen, T., Hu, W., Song, J., Guai, G.H., and Li, C.M.: Interface functionalization of photoelectrodes with graphene for high performance dye-sensitized solar cells. Adv. Funct. Mater. 22, 52455250 (2012).
72. Tang, B. and Hu, G.: Two kinds of graphene-based composites for photoanode applying in dye-sensitized solar cell. J. Power Sources 220, 95102 (2012).
73. Neo, C.Y. and Ouyang, J.: Graphene oxide as auxiliary binder for TiO2 nanoparticle coating to more effectively fabricate dye-sensitized solar cells. J. Power Sources 222, 161168 (2013).
74. Sun, S., Gao, L., and Liu, Y.: Enhanced dye-sensitized solar cell using graphene-TiO2 photoanode prepared by heterogeneous coagulation. Appl. Phys. Lett. 96, 083113 (2010).
75. Wang, H., Leonard, S.L., and Hu, Y.H.: Promoting effect of graphene on dye-sensitized solar cells. Ind. Eng. Chem. Res. 51, 1061310620 (2012).
76. Tang, B., Hu, G., Gao, H., and Shi, Z.: Three-dimensional graphene network assisted high performance dye sensitized solar cells. J. Power Sources 234, 6068 (2013).
77. Zhang, X-Y., Li, H-P., Cui, X-L., and Lin, Y.: Graphene/TiO2 nanocomposites: Synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. J. Mater. Chem. 20, 28012806 (2010).
78. Xin, X., Zhou, X., Wu, J., Yao, X., and Liu, Z.: Scalable synthesis of TiO2/graphene nanostructured composite with high-rate performance for lithium ion batteries. ACS Nano 6, 1103511043 (2012).
79. Ding, J.N., Yu, C.T., Yuan, N.Y., Liu, Y.B., and Fan, Y: High-quality GS/TiO2 composite for the photoanode of the dye-sensitized solar cells. In Proceedings of the International Conference on Materials for Renewable Energy & Environment (ICMREE), May 20–22, 2011; pp. 9094.
80. Gs, A., Nair, S., Nair, S.V., and Vadukumpully, S.: One-pot hydrothermal synthesis of TiO2/graphene nanocomposites for enhanced visible photocatalysis and photovoltaics. RSC Adv. 3(31), 12933–12938 (2013). doi: 10.1039/c3ra41388h.
81. Chang, J., Yang, J., Ma, P., Wu, D., Tian, L., Gao, Z., Jiang, K., and Yang, L.: Hierarchical titania mesoporous sphere/graphene composite, synthesis and application as photoanode in dye sensitized solar cells. J. Colloid Interface Sci. 394, 231236 (2013).
82. Fan, J., Liu, S., and Yu, J.: Enhanced photovoltaic performance of dye-sensitized solar cells based on TiO2 nanosheets/graphene composite films. J. Mater. Chem. 22, 1702717036 (2012).
83. Sun, L., Zhao, Z., Zhou, Y., and Liu, L.: Anatase TiO2 nanocrystals with exposed {001} facets on graphene sheets via molecular grafting for enhanced photocatalytic activity. Nanoscale 4, 613620 (2012).
84. Liu, X., Pan, L., Lv, T., Zhu, G., Lu, T., Sun, Z., and Sun, C.: Microwave-assisted synthesis of TiO2-reduced graphene oxide composites for the photocatalytic reduction of Cr(vi). RSC Adv. 1, 12451249 (2011).
85. Tsai, T.H., Chiou, S.C., and Chen, S.M.: Enhancement of dye-sensitized solar cells by using graphene-TiO2 composites as photoelectrochemical working electrode. Int. J. Electrochem. Sci. 6, 33333343 (2011).
86. Anish Madhavan, A., Kalluri, S., Chacko, D.K., Arun, T.A., Nagarajan, S., Subramanian, K.R.V., Sreekumaran Nair, A., Nair, S.V., and Balakrishnan, A.: Electrical and optical properties of electrospun TiO2-graphene composite nanofibers and its application as DSSC photo-anodes. RSC Adv. 2, 1303213037 (2012).
87. Zhang, X., Suresh Kumar, P., Aravindan, V., Liu, H.H., Sundaramurthy, J., Mhaisalkar, S.G., Duong, H.M., Ramakrishna, S., and Madhavi, S.: Electrospun TiO2–graphene composite nanofibers as a highly durable insertion anode for lithium ion batteries. J. Phys. Chem. C 116, 1478014788 (2012).
88. Kim, C.H., Kim, B-H., and Yang, K.S.: TiO2 nanoparticles loaded on graphene/carbon composite nanofibers by electrospinning for increased photocatalysis. Carbon 50, 24722481 (2012).
89. Song, J., Yin, Z., Yang, Z., Amaladass, P., Wu, S., Ye, J., Zhao, Y., Deng, W-Q., Zhang, H., and Liu, X-W.: Enhancement of photogenerated electron transport in dye-sensitized solar cells with introduction of a reduced graphene oxide–TiO2 junction. Chem. Eur. J. 17, 1083210837 (2011).
90. Durantini, J., Boix, P.P., Gervaldo, M., Morales, G.M., Otero, L., Bisquert, J., and Barea, E.M.: Photocurrent enhancement in dye-sensitized photovoltaic devices with titania–graphene composite electrodes. J. Electroanal. Chem. 683, 4346 (2012).
91. Han, H., Sudhagar, P., Song, T., Jeon, Y., Mora-Sero, I., Fabregat-Santiago, F., Bisquert, J., Kang, Y.S., and Paik, U.: Three dimensional-TiO2 nanotube array photoanode architectures assembled on a thin hollow nanofibrous backbone and their performance in quantum dot-sensitized solar cells. Chem. Commun. 49, 28102812 (2013).
92. Gratzel, M.: Photoelectrochemical cells. Nature 414, 338344 (2001).
93. Grätzel, M.: Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J. Photochem. Photobiol., A 164, 314 (2004).
94. Trancik, J.E., Barton, S.C., and Hone, J.: Transparent and catalytic carbon nanotube films. Nano Lett. 8, 982987 (2008).
95. Li, G.R., Wang, F., Jiang, Q.W., Gao, X.P., and Shen, P.W.: Carbon nanotubes with titanium nitride as a low-cost counter-electrode material for dye-sensitized solar cells. Angew. Chem. Int. Ed. 49, 36533656 (2010).
96. Wang, M.K., Anghel, A.M., Marsan, B., Ha, N.L.C., Pootrakulchote, N., Zakeeruddin, S.M., and Gratzel, M.: CoS supersedes Pt as efficient electrocatalyst for triiodide reduction in dye-sensitized solar cells. J. Am. Chem. Soc. 131, 15976 (2009).
97. Murakami, T.N., Ito, S., Wang, Q., Nazeeruddin, M.K., Bessho, T., Cesar, I., Liska, P., Humphry-Baker, R., Comte, P., Pechy, P., and Graetzel, M.: Highly efficient dye-sensitized solar cells based on carbon black counter electrodes. J. Electrochem. Soc. 153, A2255A2261 (2006).
98. Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M.S., and Kong, J.: Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 3035 (2008).
99. Acik, M., Lee, G., Mattevi, C., Chhowalla, M., Cho, K., and Chabal, Y.J.: Unusual infrared-absorption mechanism in thermally reduced graphene oxide. Nat. Mater. 9, 840845 (2010).
100. Kavan, L., Yum, J.H., and Gratzel, M.: Optically transparent cathode for dye-sensitized solar cells based on graphene nanoplatelets. ACS Nano 5, 165172 (2010).
101. Das, S., Sudhagar, P., Nagarajan, S., Ito, E., Lee, S.Y., Kang, Y.S., and Choi, W.: Synthesis of graphene-CoS electro-catalytic electrodes for dye sensitized solar cells. Carbon 50, 48154821 (2012).
102. Das, S., Sudhagar, P., Ito, E., Lee, D-Y., Nagarajan, S., Lee, S.Y., Kang, Y.S., and Choi, W.: Effect of HNO3 functionalization on large scale graphene for enhanced tri-iodide reduction in dye-sensitized solar cells. J. Mater. Chem. 22, 2049020497 (2012).
103. Xu, C., Li, J., Wang, X., Wang, J., Wan, L., Li, Y., Zhang, M., Shang, X., and Yang, Y.: Synthesis of hemin functionalized graphene and its application as a counter electrode in dye-sensitized solar cells. Mater. Chem. Phys. 132, 858864 (2012).
104. Xue, Y., Liu, J., Chen, H., Wang, R., Li, D., Qu, J., and Dai, L.: Nitrogen-doped graphene foams as metal-free counter electrodes in high-performance dye-sensitized solar cells. Angew. Chem. Int. Ed. 51, 1212412127 (2012).
105. Hong, W., Xu, Y., Lu, G., Li, C., and Shi, G.: Transparent graphene/PEDOT–PSS composite films as counter electrodes of dye-sensitized solar cells. Electrochem. Commun. 10, 15551558 (2008).
106. Lee, K.S., Lee, Y., Lee, J.Y., Ahn, J-H., and Park, J.H.: Flexible and platinum-free dye-sensitized solar cells with conducting-polymer-coated graphene counter electrodes. ChemSusChem 5, 379382 (2012).
107. Gong, F., Wang, H., and Wang, Z-S.: Self-assembled monolayer of graphene/Pt as counter electrode for efficient dye-sensitized solar cell. Phys. Chem. Chem. Phys. 13(39), 17676–17682 (2011). doi: 10.1039/c1cp22542a.
108. Li, P-J., Chen, K., Chen, Y-F., Wang, Z-G., Hao, X., Liu, J-B., He, J-R., and Zhang, W-L.: Low platinum loading PtNPs/graphene composite catalyst with high electrocatalytic activity for dye-sensitized solar cells. Chin. Phys. B 21, 118101 (2012).
109. Al-Mamun, M., Kim, J-Y., Sung, Y-E., Lee, J-J., and Kim, S-R.: Pt and TCO free hybrid bilayer silver nanowire–graphene counter electrode for dye-sensitized solar cells. Chem. Phys. Lett. 561562, 115119 (2013).
110. Bajpai, R., Roy, S., Koratkar, N., and Misra, D.S.: NiO nanoparticles deposited on graphene platelets as a cost-effective counter electrode in a dye sensitized solar cell. Carbon 56, 5663 (2013).
111. Dou, Y.Y., Li, G.R., Song, J., and Gao, X.P.: Nickel phosphide-embedded graphene as counter electrode for dye-sensitized solar cells. Phys. Chem. Chem. Phys. 14, 13391342 (2012).
112. Wen, Z., Cui, S., Pu, H., Mao, S., Yu, K., Feng, X., and Chen, J.: Metal nitride/graphene nanohybrids: General synthesis and multifunctional titanium nitride/graphene electrocatalyst. Adv. Mater. 23, 54455450 (2011).
113. Choi, H., Kim, H., Hwang, S., Kang, M., Jung, D-W., and Jeon, M.: Electrochemical electrodes of graphene-based carbon nanotubes grown by chemical vapor deposition. Scr. Mater. 64, 601604 (2011).
114. Velten, J., Mozer, A.J., Li, D., Officer, D., Wallace, G., Baughman, R., and Zakhidov, A.: Carbon nanotube/graphene nanocomposite as efficient counter electrodes in dye-sensitized solar cells. Nanotechnology 23, 085201 (2012).
115. Zhu, G., Pan, L., Lu, T., Xu, T., and Sun, Z.: Electrophoretic deposition of reduced graphene-carbon nanotubes composite films as counter electrodes of dye-sensitized solar cells. J. Mater. Chem. 21, 1486914875 (2011).
116. Wan, L., Wang, S., Wang, X., Dong, B., Xu, Z., Zhang, X., Yang, B., Peng, S., Wang, J., and Xu, C.: Room-temperature fabrication of graphene films on variable substrates and its use as counter electrodes for dye-sensitized solar cells. Solid State Sci. 13, 468475 (2011).
117. Kaniyoor, A. and Ramaprabhu, S.: Thermally exfoliated graphene based counter electrode for low cost dye sensitized solar cells. J. Appl. Phys. 109, 124308124316 (2011).
118. Zhang, D.W., Li, X.D., Li, H.B., Chen, S., Sun, Z., Yin, X.J., and Huang, S.M.: Graphene-based counter electrode for dye-sensitized solar cells. Carbon 49, 53825388 (2011).
119. Hsieh, C-T., Yang, B-H., and Lin, J-Y.: One- and two-dimensional carbon nanomaterials as counter electrodes for dye-sensitized solar cells. Carbon 49, 30923097 (2011).
120. Choi, H., Kim, H., Hwang, S., Han, Y., and Jeon, M.: Graphene counter electrodes for dye-sensitized solar cells prepared by electrophoretic deposition. J. Mater. Chem. 21, 75487551 (2011).
121. Cruz, R., Pacheco Tanaka, D.A., and Mendes, A.: Reduced graphene oxide films as transparent counter-electrodes for dye-sensitized solar cells. Solar Energy 86, 716724 2012.
122. Stefik, M., Yum, J-H., Hu, Y., and Gratzel, M.: Carbon-graphene nanocomposite cathodes for improved Co(ii/iii) mediated dye-sensitized solar cells. J. Mater. Chem. A 1, 49824987 (2013).
123. Choi, H., Kim, H., Hwang, S., Choi, W., and Jeon, M.: Dye-sensitized solar cells using graphene-based carbon nano composite as counter electrode. Sol. Energy Mater. Sol. Cells 95, 323325 (2011).
124. Xu, X.B., Huang, D.K., Cao, K., Wang, M.K., Zakeeruddin, S.M., and Gratzel, M.: Electrochemically reduced graphene oxide multilayer films as efficient counter electrode for dye-sensitized solar cells. Sci. Rep. 3, 7 (2013).
125. Sun, W., Peng, T., Liu, Y., Xu, S., Yuan, J., Guo, S., and Zhao, X-Z.: Hierarchically porous hybrids of polyaniline nanoparticles anchored on reduced graphene oxide sheets as counter electrodes for dye-sensitized solar cells. J. Mater. Chem. A 1, 27622768 (2013).
126. Kamat, P.V.: Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J. Phys. Chem. C 112, 1873718753 (2008).
127. Smith, A.M. and Nie, S.: Semiconductor nanocrystals: Structure, properties, and band gap engineering. Acc. Chem. Res. 43, 190200 (2009).
128. Tisdale, W.A., Williams, K.J., Timp, B.A., Norris, D.J., Aydil, E.S., and Zhu, X-Y.: Hot-electron transfer from semiconductor nanocrystals. Science 328, 15431547 (2010).
129. Semonin, O.E., Luther, J.M., Choi, S., Chen, H-Y., Gao, J., Nozik, A.J., and Beard, M.C.: Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 334, 15301533 (2011).
130. Farrow, B. and Kamat, P.V.: CdSe quantum dot sensitized solar cells. Shuttling electrons through stacked carbon nanocups. J. Am. Chem. Soc. 131, 1112411131 (2009).
131. Lee, H., Wang, M., Chen, P., Gamelin, D.R., Zakeeruddin, S.M., Gratzel, M., and Nazeeruddin, M.K.: Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process. Nano Lett. 9, 42214227 (2009).
132. Lee, H.J., Chen, P., Moon, S.J., Sauvage, F., Sivula, K., Bessho, T., Gamelin, D.R., Comte, P., Zakeeruddin, S.M., Seok, S.I., Gratzel, M., and Nazeeruddin, M.K.: Regenerative PbS and CdS quantum dot sensitized solar cells with a cobalt complex as hole mediator. Langmuir 25, 76027608 (2009).
133. Ruhle, S., Shalom, M., and Zaban, A.: Quantum-dot-sensitized solar cells. ChemPhysChem 11, 22902304 (2010).
134. Samadpour, M., Gimenez, S., Zad, A.I., Taghavinia, N., and Mora-Sero, I.: Easily manufactured TiO2 hollow fibers for quantum dot sensitized solar cells. Phys. Chem. Chem. Phys. 14, 522528 (2012).
135. Zhou, N., Yang, Y., Huang, X., Wu, H., Luo, Y., Li, D., and Meng, Q.: Panchromatic quantum-dot-sensitized solar cells based on a parallel tandem structure. ChemSusChem 6, 687692 (2013).
136. Hodes, G.: Comparison of dye- and semiconductor-sensitized porous nanocrystalline liquid junction solar cells. J. Phys. Chem. C 112, 1777817787 (2008).
137. Guo, C.X., Yang, H.B., Sheng, Z.M., Lu, Z.S., Song, Q.L., and Li, C.M.: Layered graphene/quantum dots for photovoltaic devices. Angew. Chem. Int. Ed. 49, 30143017 (2010).
138. Sun, S., Gao, L., Liu, Y., and Sun, J.: Assembly of CdSe nanoparticles on graphene for low-temperature fabrication of quantum dot sensitized solar cell. Appl. Phys. Lett. 98, 093112 (2011). doi: 10.1063/1.3558732.
139. Mora-Seró, I., Giménez, S., Fabregat-Santiago, F., Gómez, R., Shen, Q., Toyoda, T., and Bisquert, J.: Recombination in quantum dot sensitized solar cells. Acc. Chem. Res. 42, 18481857 (2009).
140. Lee, J.W., Son, D.Y., Ahn, T.K., Shin, H.W., Kim, I.Y., Hwang, S.J., Ko, M.J., Sul, S., Han, H., and Park, N.G.: Quantum-dot-sensitized solar cell with unprecedentedly high photocurrent. Sci. Rep. 3, 1050 (2013). doi: 10.1038/srep01050.
141. Sudhagar, P., Asokan, K., Ito, E., and Kang, Y.S.: N-ion-implanted TiO2 photoanodes in quantum dot-sensitized solar cells. Nanoscale 4, 24162422 (2012).
142. Tachan, Z., Hod, I., Shalom, M., Grinis, L., and Zaban, A.: The importance of the TiO2/quantum dots interface in the recombination processes of quantum dot sensitized solar cells. Phys. Chem. Chem. Phys. 15, 38413845 (2013).
143. De La Fuente, M.S., Sánchez, R.S., González-Pedro, V., Boix, P.P., Mhaisalkar, S.G., Rincón, M.E., Bisquert, J., and Mora-Seró, I.: Effect of organic and inorganic passivation in quantum-dot-sensitized solar cells. J. Phys. Chem. Lett. 4, 15191525 (2013).
144. Sudhagar, P., Ramasamy, E., Cho, W-H., Lee, J., and Kang, Y.S.: Robust mesocellular carbon foam counter electrode for quantum-dot sensitized solar cells. Electrochem. Commun. 13, 3437 (2011).
145. Braga, A., Giménez, S., Concina, I., Vomiero, A., and Mora-Seró, I.: Panchromatic sensitized solar cells based on metal sulfide quantum dots grown directly on nanostructured TiO2 electrodes. J. Phys. Chem. Lett. 2, 454460 (2011).
146. Zhao, J., Wu, J., Yu, F., Zhang, X., Lan, Z., and Lin, J.: Improving the photovoltaic performance of cadmium sulfide quantum dots-sensitized solar cell by graphene/titania photoanode. Electrochim. Acta 96, 110116 (2013).
147. Lightcap, I.V. and Kamat, P.V.: Fortification of CdSe quantum dots with graphene oxide. Excited state interactions and light energy conversion. J. Am. Chem. Soc. 134, 71097116 (2012).
148. Li, L.S. and Yan, X.: Colloidal graphene quantum dots. J. Phys. Chem. Lett. 1, 25722576 (2010).
149. Li, Y., Hu, Y., Zhao, Y., Shi, G., Deng, L., Hou, Y., and Qu, L.: An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv. Mater. 23, 776780 (2011).
150. Hamilton, I.P., Li, B., Yan, X., and Li, L.S.: Alignment of colloidal graphene quantum dots on polar surfaces. Nano Lett. 11, 15241529 (2011).
151. Williams, K.J., Nelson, C.A., Yan, X., Li, L-S., and Zhu, X.: Hot electron injection from graphene quantum dots to TiO2 . ACS Nano 7, 13881394 (2013).
152. Yan, X., Cui, X., and Li, B., Li, L-S.: Large, solution-processable graphene quantum dots as light absorbers for photovoltaics. Nano Lett. 10, 18691873 (2010).
153. Krebs, F.C.: Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Sol. Energy Mater. Sol. Cells 93, 394412 (2009).
154. Su, Y-W., Lan, S-C., and Wei, K-H.: Organic photovoltaics. Mater. Today 15, 554562 (2012).
155. Yong, V. and Tour, J.M.: Theoretical efficiency of nanostructured graphene-based photovoltaics. Small 6, 313318 (2010).
156. Gomez De Arco, L., Zhang, Y., Schlenker, C.W., Ryu, K., Thompson, M.E., and Zhou, C.: Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano 4, 28652873 (2010).
157. Gupta, V., Chaudhary, N., Srivastava, R., Sharma, G.D., Bhardwaj, R., and Chand, S.: Luminscent graphene quantum dots for organic photovoltaic devices. J. Am. Chem. Soc. 133, 99609963 (2011).
158. Jo, G., Na, S.I., Oh, S.H., Lee, S., Kim, T.S., Wang, G., Choe, M., Park, W., Yoon, J., Kim, D.Y., Kahng, Y.H., and Lee, T.: Tuning of a graphene-electrode work function to enhance the efficiency of organic bulk heterojunction photovoltaic cells with an inverted structure. Appl. Phys. Lett. 97, 213301 (2010). doi: 10.1063/1.3514551.
159. Lee, Y.Y., Tu, K.H., Yu, C.C., Li, S.S., Hwang, J.Y., Lin, C.C., Chen, K.H., Chen, L.C., Chen, H.L., and Chen, C.W.: Top laminated graphene electrode in a semitransparent polymer solar cell by simultaneous thermal annealing/releasing method. ACS Nano 5, 65646570 (2011).
160. He, Z., Zhong, C., Su, S., Xu, M., Wu, H., and Cao, Y.: Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat. Photonics 6, 591595 (2012).
161. Dou, L., You, J., Yang, J., Chen, C.C., He, Y., Murase, S., Moriarty, T., Emery, K., Li, G., and Yang, Y.: Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nat. Photonics 6, 180185 (2012).
162. Small, C.E., Chen, S., Subbiah, J., Amb, C.M., Tsang, S.W., Lai, T.H., Reynolds, J.R., and So, F.: High-efficiency inverted dithienogermole-thienopyrrolodione-based polymer solar cells. Nat. Photonics 6, 115120 (2012).
163. Park, H., Brown, P.R., Bulović, V., and Kong, J.: Graphene as transparent conducting electrodes in organic photovoltaics: Studies in graphene morphology, hole transporting layers, and counter electrodes. Nano Lett. 12, 133140 (2011).
164. Lin, P., Choy, W.C.H., Zhang, D., Xie, F., Xin, J., and Leung, C.W.: Semitransparent organic solar cells with hybrid monolayer graphene/metal grid as top electrodes. Appl. Phys. Lett. 102, 113303 (2013). doi: 10.1063/1.4798254.
165. Eda, G., Fanchini, G., and Chhowalla, M.: Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3, 270274 (2008).
166. Wan, X., Long, G., Huang, L., and Chen, Y.: Graphene: A promising material for organic photovoltaic cells. Adv. Mater. 23, 53425358 (2011).
167. Abdulalmohsin, S. and Cui, J.B.: Graphene-enriched P3HT and porphyrin-modified ZnO nanowire arrays for hybrid solar cell applications. J. Phys. Chem. C 116, 94339438 (2012).
168. Choi, Y.Y., Kang, S.J., Kim, H.K., Choi, W.M., and Na, S.I.: Multilayer graphene films as transparent electrodes for organic photovoltaic devices. Sol. Energy Mater. Sol. Cells 96, 281285 (2012).
169. Hsu, C.L., Lin, C.T., Huang, J.H., Chu, C.W., Wei, K.H., and Li, L.J.: Layer-by-layer graphene/TCNQ stacked films as conducting anodes for organic solar cells. ACS Nano 6, 50315039 (2012).
170. Lee, S., Yeo, J.S., Ji, Y., Cho, C., Kim, D.Y., Na, S.I., Lee, B.H., and Lee, T.: Flexible organic solar cells composed of P3HT: PCBM using chemically doped graphene electrodes. Nanotechnology 23, 344013 (2012). doi: 10.1088/0957-4484/23/34/344013.
171. Liu, Z., Li, J., Sun, Z.H., Tai, G., Lau, S.P., and Yan, F.: The application of highly doped single-layer graphene as the top electrodes of semitransparent organic solar cells. ACS Nano 6, 810818 (2012).
172. Park, H., Howden, R.M., Barr, M.C., Bulović, V., Gleason, K., and Kong, J.: Organic solar cells with graphene electrodes and vapor printed poly(3,4-ethylenedioxythiophene) as the hole transporting layers. ACS Nano 6, 63706377 (2012).
173. Zhong, S., Zhong, J.Q., Mao, H.Y., Wang, R., Wang, Y., Qi, D.C., Loh, K.P., Wee, A.T.S., Chen, Z.K., and Chen, W.: CVD graphene as interfacial layer to engineer the organic donor-acceptor heterojunction interface properties. ACS Appl. Mater. Interfaces 4, 31343140 (2012).
174. Kim, H.P., Mohd Yusoff, A.R.B., and Jang, J.: Organic solar cells using a reduced graphene oxide anode buffer layer. Sol. Energy Mater. Sol. Cells 110, 8793 (2013).
175. Park, H., Chang, S., Smith, M., Gradečak, S., and Kong, J.: Interface engineering of graphene for universal applications as both anode and cathode in organic photovoltaics. Sci. Rep. 3, 1581 (2013). doi: 10.1038/srep01581.
176. Iwan, A. and Chuchmała, A.: Perspectives of applied graphene: Polymer solar cells. Prog. Polym. Sci. 37, 18051828 (2012).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed