Skip to main content
×
Home

Graphite–graphene hybrid filler system for high thermal conductivity of epoxy composites

  • Nayandeep K. Mahanta (a1), Marcio R. Loos (a2), Ica Manas Zlocozower (a3) and Alexis R. Abramson (a4)
Abstract
Abstract

The thermal conductivities of epoxy composites of mixtures of graphite and graphene in varying ratios were measured. Thermal characterization results showed unexpectedly high conductivities at a certain ratio filler ratio. This phenomenon was exhibited by samples with three different overall filler concentrations (graphene + graphite) of 7, 14, and 35 wt%. The highest thermal conductivity of 42.4 ± 4.8 W/m K (nearly 250 times the thermal conductivity of pristine epoxy) was seen for a sample with 30 wt% graphite and 5 wt% graphene when characterized using the dual-mode heat flow meter technique. This significant improvement in thermal conductivity can be attributed to the lowering of overall thermal interface resistance due to small amounts of nanofillers (graphene) improving the thermal contact between the primary microfillers (graphite). The synergistic effect of this hybrid filler system is lost at higher loadings of the graphene relative to graphite. Graphite and graphene mixed in the ratio of 6:1 yielded the highest thermal conductivities at three different filler loadings.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: alexis.abramson@case.edu
References
Hide All
1.Heremans J. and Beetz C.P. Jr.: Thermal conductivity and thermopower of vapor-grown graphite fibers. Phys. Rev. B 32, 1981 (1985).
2.Slack G.A.: Anisotropic thermal conductivity of pyrolytic graphite. Phys. Rev. 127, 694 (1962).
3.Balandin A.A., Ghosh S., Bao W., Calizo I., Teweldebrahn D., Miao F., and Lau C.N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902 (2008).
4.Shenogin S., Xue L., Ozisik R., Keblinski P., and Cahill D.G.: Role of thermal boundary resistance on the heat flow in carbon-nanotube composites. J Appl. Phys. 95, 8136 (2004).
5.Gonnet P., Liang Z., Choi E.S., Kadambala R.S., Zhang C., Brooks J.S., Wang B., and Kramer L.: Thermal conductivity of magnetically aligned carbon nanotube buckypapers and composites. Curr. Appl. Phys. 6, 119 (2006).
6.Iijima S.: Helical microtubes of graphitic carbon. Nature. 354, 56 (1991).
7.Ajayan P.M., Stephan O., Colliex C., and Trauth D.: Aligned carbon nanotube arrays formed by cutting a polymer resin—Nanotube composite. Science 265, 1212 (1994).
8.Choi E.S., Brooks J.S., Eaton D.L., Al-Haik M.S., Hussaini M.Y., Garmestani H., Li D., and Dahmen K.: Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing. J Appl. Phys. 94, 6034 (2003).
9.Moisala A., Li Q., Kinloch I.A., and Windle A.H.: Thermal and electrical conductivity of single and multi-walled carbon nanotube-epoxy composites. Compos. Sci. Technol. 65, 1285 (2006).
10.Gojny F.H., Wichmann M.H.G., Fiedler B., Kinloch I.A., Bauhafer W., Windle A.H., and Scuttle K.: Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer 47, 2036 (2006).
11.Yu A., Itkis M.E., Bekyarova E., and Haddon R.C.: Effect of single-walled carbon nanotube purity on the thermal conductivity of carbon nanotube-based composites. Appl. Phys. Lett. 89, 133102 (2006).
12.Guo J., Zhao B., Itkis M.E., Bekyarova E., Hu H., Karnak V., Yu A., and Haddon R.C.: Chemical engineering of the single-walled carbon nanotube-nylon 6 interface. J. Am. Chem. Soc. 128, 7492 (2006).
13.Shenogin S., Bodapati A., Xue L., OIzisik R., and Keblinski P.: Effect of chemical functionalization on thermal transport of carbon nanotube composites. Appl. Phys. Lett. 85, 2229 (2004).
14.Guthy C., Du F., Brand S., Winey K.I., and Fischer J.E.: Thermal conductivity of single-walled carbon nanotube/PMMA nanocomposites. J. Heat Transfer 129, 1096 (2007).
15.Yang K., Gu M., Guo Y., Pan X., and Mu G.: Effects of carbon nanotube functionalization on the the mechanical and thermal properties of epoxy composites. Carbon 47, 1723 (2009).
16.Du F., Guthy C., Kashiwagi T., Fischer J.E., and Winey K.I.: An infiltration method for preparing single-wall nanotube/epoxy composites with improved thermal conductivity. J. Polym. Sci., Part B: Polym. Phys. 44, 1513 (2006).
17.Gong Q.M., Li Z., Bai X.D., Li D., Zhao Y., and Liang J.: Thermal properties of aligned carbon nanotube/carbon nanocomposites. Mater. Sci. Eng., A 384, 209 (2004).
18.Huang H., Liu C.H., Wu Y., and Fan S.S.: Aligned carbon nanotube composite films for thermal management. Adv. Mater. 17, 1652 (2005).
19.Park J.G., Cheng Q., Lu J., Bao J., Li S., Tian Y., Liang Z., Zhang C., and Wang B.: Thermal conductivity of MWCNT/epoxy composites: The effects of length, alignment and functionalization. Carbon 50, 2083 (2012).
20.Veca L.M., Meziani M.J., Wang W., Wang X., Lu F., Zhang P., Lin Y., Fee R., Connell J.W., and Sun Y.P.: Carbon nanosheets for polymeric nanocomposites with high thermal conductivity. Adv. Mater. 21, 2088 (2009).
21.Moniruzzaman M. and Winey K.: Polymer nanocomposites containing carbon nanotubes. Macromolecules 39, 5194 (2006).
22.Kumar S., Alam M.A., and Murthy J.Y.: Effect of percolation on thermal transport in nanotube composites. Appl. Phys. Lett. 90, 104105 (2007).
23.Keblinski P. and Cleri F.: Contact resistance in percolating networks. Phys. Rev. B 69, 184201 (2004).
24.Foygel M., Morris R.D., Anez D., French S., and Sobolev V.L.: Theoretical and computational studies of carbon nanotube composites and suspensions: Electrical and thermal conductivity. Phys. Rev. B 71, 104201 (2005).
25.Hu T., Grosberg A.Y., and Shklovskii B.I.: Conductivity of a suspension of nanowires in a weakly conducting medium. Phys. Rev. B 73, 155434 (2006).
26.Tian W. and Yang R.: Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Appl. Phys. Lett. 90, 263105 (2007).
27.Konatham D. and Stroilo A.: Thermal boundary resistance at the graphene-oil interface. Appl. Phys. Lett. 95, 163105 (2009).
28.Huxtable S.T., Cahill D.G., Shenogin S., Xue L., Ozisik R., Barone P., Usrey M., Strano M.S., Siddons G., Shim M., and Keblinski P.: Interfacial heat flow in carbon nanotube suspensions. Nat. Mater. 2, 731 (2003).
29.Sun X., Ramesh P., Itkis M.E., Bekyarova E., and Haddon R.C.: Dependence of the thermal conductivity of two-dimensional graphite nanoplatelet-based composites on the nanoparticle size distribution. J. Phys.: Condens. Mater. 22, 334216 (2010).
30.Teng C.C., Ma C.C.M., Lu C.H., Yang S.Y., Lee S.H., Hsiao M.C., Yen M.Y., Chiou K.C., and Lee T.M.: Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites. Carbon 49, 5107 (2011).
31.Yu A., Ramesh P., Sun X., Bekyarova E., Itkis M.E., and Haddon R.C.: Enhanced thermal conductivity in a hybrid graphite nanoplatelet-carbon nanotube filler for epoxy composites. Adv. Mater. 20, 4740 (2008).
32.Shahil K.M.F. and Balandin A.A.: Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett. 12, 861 (2012).
33.Bui K., Duong H.M., Striolo A., and Papavassiliou D.V.: Effective heat transfer properties of graphene sheet nanocomposites and comparison to carbon nanotube nanocomposites. J. Phys. Chem. C 115, 3872 (2011).
34.Mahanta N.K. and Abramson A.R.: Development of the thermal flash method for characterization of carbon nanofibers. In Proceedings of the ASME/JSME 8th Thermal Engineering Joint Conference, Honolulu, Hawaii, USA, March 2011.
35.Mahanta N.K. and Abramson A.R.: The thermal flash technique: The inconsequential effect of contact resistance and the characterization of carbon nanotube clusters. Rev. Sci. Instrum. 83, 054904 (2012).
36.Mahanta N.K. and Abramson A.R.: Thermal conductivity of graphene and graphene oxide nanoplatelets. In Proceedings of the 13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), San Diego, California, USA, May 2012.
37.Mahanta N.K., Abramson A.R., and Howe J.Y.: Thermal conductivity measurements on individual vapor-grown carbon nanofibers and graphene nanoplatelets. J Appl. Phys. 114, 163528 (2013).
38.Mahanta N.K. and Abramson A.R.: The dual-mode heat flow meter technique: A versatile method for characterizing thermal conductivity. Int. J. Heat Mass Transfer 53, 5581 (2010).
39.Mahanta N.K., Abramson A.R., Lake M.L., Burton D.J., Chang J.C., Mayer H.K., and Ravine J.L.: Thermal conductivity of carbon nanofiber mats. Carbon 48, 4457 (2010).
40.Deng F., Zheng Q.S., Wang L.F., and Nan C.W.: Effects of anisotropy, aspect ratio, and nonstraightness of carbon nanotubes on thermal conductivity of carbon nanotube composites. Appl. Phys. Lett. 90, 021914 (2007).
41.Deng F. and Zheng Q.S.: Interaction models for effective thermal and electrical conductivities of carbon nanotube composites. Acta Mech. Solida Sin. 22, 1 (2009).
42.Moore A.L., Cummins A.T., Jensen J.M., and Shi L., Koo J.H.: Thermal conductivity measurements of nylon 11-carbon nanofiber nanocomposites. J. Heat Transfer 131, 091602 (2009).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 5
Total number of PDF views: 67 *
Loading metrics...

Abstract views

Total abstract views: 276 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th November 2017. This data will be updated every 24 hours.