Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-28T05:00:49.191Z Has data issue: false hasContentIssue false

Growth and characterization of type II ZnO/ZnSe core/shell nanowire arrays

Published online by Cambridge University Press:  31 January 2011

Junyong Kang*
Affiliation:
Fujian Key Laboratory of Semiconductor Materials and Applications, Department of Physics, Xiamen University, Xiamen 361005, People's Republic of China
*
b)Address all correspondence to this author. e-mail: jykang@xmu.edu.cn
Get access

Abstract

Type II ZnO/ZnSe core/shell nanowire arrays were grown by a two-step chemical vapor deposition. The nanowire arrays with dense nanoislands on the surface are well aligned and normal to the substrate imaged by scanning electron microscopy. The core/shell structure of nanowires was identified by a high-resolution transmission electron microscopy. The structure and composition of the shell were confirmed to be wurtzite ZnSe by x-ray diffraction, Raman scattering and energy-dispersive x-ray spectroscopy. Moreover, an intense emission was observed at 1.89 eV smaller than the band gaps of core and shell materials by photoluminescence, indicating the achievement of the type II band alignment at the interface. This study is expected to contribute to the potential applications in novel photovoltaic devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Beek, W.J.E., Wienk, M.M., Janssen, R.A.J.Efficient hybrid solar cells from zinc oxide nanoparticles and a conjugated polymer. Adv. Mater. 16, 1009 (2004)Google Scholar
2.Zhang, X., Lu, M., Zhang, Y., Chen, L., Wang, Z.L.Fabrication of a high-brightness blue-light-emitting diode using a ZnO-nanowire array grown on p-GaN thin film. Adv. Mater. 21, 2767 (2009)Google Scholar
3.Huang, M.H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R., Yang, P.Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897 (2001)CrossRefGoogle ScholarPubMed
4.Leung, Y.H., He, Z.B., Luo, L.B., Tsang, C.H.A., Wong, N.B., Zhang, W.J., Lee, S.T.ZnO nanowires array p-n homojunction and its application as a visible-blind ultraviolet photodetector. Appl. Phys. Lett. 96, 053102 (2010)Google Scholar
5.Datta, A., Panda, S.K., Chaudhuri, S.Synthesis and optical and electrical properties of CdS/ZnS core/shell nanorods. J. Phys. Chem. C 111, 17260 (2007)Google Scholar
6.Koida, T., Chichibu, S.F., Uedono, A., Tsukazaki, A., Kawasaki, M., Sota, T., Segawa, Y., Koinuma, H.Correlation between the photoluminescence lifetime and defect density in bulk and epitaxial ZnO. Appl. Phys. Lett. 82, 532 (2003)Google Scholar
7.Willander, M., Yang, L.L., Wadeasa, A., Ali, S.U., Asif, M.H., Zhao, Q.X., Nur, O.Zinc oxide nanowires: Controlled low temperature growth and some electrochemical and optical nano-devices. J. Mater. Chem. 19, 1006 (2009)Google Scholar
8.Peng, S., Su, Y., Ji, L., Wu, C., Cheng, W., Chao, W.ZnO nanobridge array UV photodetector. J. Phys. Chem. C 114, 2304 (2010)CrossRefGoogle Scholar
9.Yodyingyong, S., Zhang, Q., Park, K., Dandeneau, C.S., Zhou, X., Triampo, D., Cao, G.ZnO nanoparticles and nanowire array hybrid photoanodes for dye-sensitized solar cells. Appl. Phys. Lett. 96, 073115 (2010)Google Scholar
10.Tak, Y., Hong, S.J., Lee, J.S., Yong, K.Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion. J. Mater. Chem. 19, 5945 (2009)Google Scholar
11.Tang, Y., Hu, X., Chen, M., Luo, L., Li, B., Zhang, L.CdSe nanocrystal sensitized ZnO core-shell nanorod array films: Preparation and photovoltaic properties. Electrochim. Acta 54, 2742 (2009)Google Scholar
12.Wang, K., Chen, J., Zhou, W., Zhang, Y., Yan, Y., Pern, J., Mascarenhas, A.Direct growth of high mismatched type II ZnO/ZnSe core/shell nanowire arrays on transparent conducting oxide substrates for solar cell applications. Adv. Mater. 20, 3248 (2008)Google Scholar
13.Meng, X.Q., Peng, H., Gai, Y.Q., Li, J.Influence of ZnS and MgO shell on the photoluminescence properties of ZnO core/shell nanowires. J. Phys. Chem. C 114, 1467 (2010)CrossRefGoogle Scholar
14.Chao, H.Y., Cheng, J.H., Lu, J.Y., Chang, Y.H., Cheng, C.L., Chen, Y.F.Growth and characterization of type-II ZnO/ZnTe core-shell nanowire arrays for solar cell applications. Superlattices Microstruct. 47, 160 (2010)Google Scholar
15.Schrier, J., Demchenko, D.O., Wang, L.Optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures for photovoltaic applications. Nano Lett. 7, 2377 (2007)Google Scholar
16.Zhang, Y., Wang, L., Mascarenhas, A.“Quantum coaxial cables” for solar energy harvesting. Nano Lett. 7, 1264 (2007)Google Scholar
17.Ivanov, S.A., Piryatinski, A., Nanda, J., Tretiak, S., Zavadil, K.R., Wallace, W.O., Werder, D., Klimov, V.I.Type-II core/shell CdS/ZnSe nanocrystals: Synthesis, electronic structures, and spectroscopic properties. J. Am. Chem. Soc. 129, 11708 (2007)Google Scholar
18.Wang, X., Gao, P., Li, J., Summers, C.J., Wang, Z.L.Rectangular porous ZnO–ZnS nanocables and ZnS nanotubes. Adv. Mater. 14, 1732 (2002)Google Scholar
19.Leschkies, K.S., Divakar, R., Basu, J., Enache-Pommer, E., Boercker, J.E., Carter, C.B., Kortshagen, U.R., Norris, D.J., Aydil, E.S.Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. Nano Lett. 7, 1793 (2007)Google Scholar
20.Ye, J., Gu, S., Zhu, S., Chen, T., Liu, W., Qin, F., Hu, L., Zhang, R., Shi, Y., Zheng, Y.Raman and photoluminescence of ZnO films deposited on Si(111) using low-pressure metalorganic chemical vapor deposition. J. Vac. Sci. Technol. A 21, 979 (2003)Google Scholar
21.Wang, H., Tian, T., Yan, S., Huang, N., Xiao, Z.Large-scale synthesis of ZnSe nanoribbons on zinc substrate. J. Cryst. Growth 311, 3787 (2009)Google Scholar
22.Machado, K.D., de Lima, J.C., de Campos, C.E.M., Grandi, T.A., Gasperini, A.M.A.Aging of a nanostructured Zn50Se50 alloy produced by mechanical alloying. Solid State Commun. 127, 477 (2003)CrossRefGoogle Scholar
23.Tan, P.H., Brunner, K., Bougeard, D., Abstreiter, G.Raman characterization of strain and composition in small-sized self-assembled Si/Ge dots. Phys. Rev. B 68, 125302 (2003)CrossRefGoogle Scholar
24.Weinstein, B.A., Piermarini, G.Raman scattering and phonon dispersion in Si and GaP at very high pressure. Phys. Rev. B 12, 1172 (1975)Google Scholar
25.Kobliska, R.J., Solin, S.A.Raman spectrum of wurtzite silicon. Phys. Rev. B 8, 3799 (1973)CrossRefGoogle Scholar
26.Feng, X., Kang, J., Inami, W., Yuan, X., Terauchi, M., Sekiguchi, T., Tsunekawa, S., Ito, S., Sakurai, T.ZnO films grown on Si substrates with Au nanocrystallites as nuclei. Cryst. Growth Des. 7, 565 (2007)Google Scholar
27.Calleja, J.M., Cardona, M.Rasonant Raman scattering in ZnO. Phys. Rev. B 16, 3753 (1977)Google Scholar
28.Wu, Y., Zhang, X., Xu, F., Zheng, L., Kang, J.A hierarchical lattice structure and formation mechanism of ZnO nano-tetrapods. Nanotechnology 20, 325709 (2009)Google Scholar
29.Arguello, C.A., Rousseau, D.L., Porto, S.P.S.First-order Raman effect in wurtzite-type crystals. Phys. Rev. B 181, 1351 (1969)CrossRefGoogle Scholar
30.Jiang, Y., Meng, X.M., Yiu, W.C., Liu, J., Ding, J.X., Lee, C., Lee, S.Zinc selenide nanoribbons and nanowires. J. Phys. Chem. B 108, 2784 (2004)CrossRefGoogle Scholar
31.Wang, J., Liu, X.H., Li, Z.S., Su, R.Z., Ling, Z., Cai, W.Z., Hou, X.Y., Wang, X.Raman scattering characterization of the crystalline qualities of ZnSe films grown on S-passivated GaAs(100) substrates. Appl. Phys. Lett. 67, 2043 (1995)Google Scholar
32.Shan, C.X., Liu, Z., Zhang, X.T., Wong, C.C., Hark, S.K.Wurtzite ZnSe nanowires: Growth, photoluminescence, and single-wire Raman properties. Nanotechnology 17, 5561 (2006)Google Scholar
33.Kong, Y.C., Yu, D.P., Zhang, B., Fang, W., Feng, S.Q.Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach. Appl. Phys. Lett. 78, 407 (2001)Google Scholar
34.Moon, C., Wei, S., Zhu, Y.Z., Chen, G.D.Band-gap bowing coefficients in large size-mismatched II-VI alloys: First-principles calculations. Phys. Rev. B 74, 233202 (2006)Google Scholar