Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-28T22:19:23.817Z Has data issue: false hasContentIssue false

Growth mechanism of YBa2Cu3O7–δ thin films and precipitates on planar and vicinal SrTiO3 substrates

Published online by Cambridge University Press:  31 January 2011

J. Kim
Affiliation:
Institute for Materials Science, George Washington University, Washington, District of Columbia 20006
D. B. Chrisey
Affiliation:
Naval Research Laboratory, Washington, District of Columbia 20375
J. S. Horwitz
Affiliation:
Naval Research Laboratory, Washington, District of Columbia 20375
M. M. Miller
Affiliation:
Naval Research Laboratory, Washington, District of Columbia 20375
C. M. Gilmore
Affiliation:
Naval Research Laboratory, Washington, District of Columbia 20375
Get access

Abstract

Effects of the vicinal angle, film thickness, and temperature on the growth modes, microstructures, and electrical properties of YBa2Cu3O7–δ on SrTiO3 were studied. Island growth transition between the initial nucleation and the later coalescence stages was observed with film thickness on a planar SrTiO3, while no islands were observed at the later stage due to the step-flow mode. As the growth temperature increased, a-axis precipitates were transformed to c-axis precipitates (islands), while no islands formed on vicinal SrTiO3. The supercurrent critical temperature was strongly related to the substrate vicinal angle due to the step-flow mode.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Chrisey, D.B., JOM 49(10), 28 (1997).CrossRefGoogle Scholar
2.Tian, Y.J., Guo, L.P., Li, L., Zhou, Y.Q., Tang, Y., Zhao, Z.X., Xu, S.F., Lu, H.B., Zhou, Y.L., Chen, Z.H., Cui, D.F., and Yang, G.Z., Appl. Phys. Lett. 65, 234 (1994).CrossRefGoogle Scholar
3.Kim, J., Stroud, R.M., Auyeung, R.C.Y, Eddy, C.R., Koller, D., Osofsky, M.S., Soulen, R.J. Jr, Horwitz, J.S., and Chrisey, D.B., (unpublished).Google Scholar
4.Boffa, V., Petrisor, T., Ciontea, L., Gambardella, U., and Barbanera, S., Physica C 276, 218 (1997).CrossRefGoogle Scholar
5.Holzapfel, B., Roas, B., Schultz, L., Bauer, P., and Saemaaa-Ischenko, G., Appl. Phys. Lett. 61, 31178 (1992).CrossRefGoogle Scholar
6.Proyer, S., Stangle, E., Borz, M., Hellebrand, B., and Bäuerle, D., Physica C 257, 1 (1996).CrossRefGoogle Scholar
7.Verbist, K., Kühle, A., and Vasiliev, A.L., Physica C 269, 131 (1996).CrossRefGoogle Scholar
8.Ye, M., Delplancke, M.P., Schroeder, J., Winand, R., and Deltour, R., Solid State Commun. 103, 645 (1997).CrossRefGoogle Scholar
9.Chu, W.K., Li, Y.P., Liu, J.R., Wu, J.Z., Tidrow, S.C., Toyoda, N., Matsuo, J., and Yamada, I., Appl. Phys. Lett. 72(2), 246 (1998).CrossRefGoogle Scholar
10.Kanda, N., Kawasaki, M., Kitajima, T., and Koinuma, H., Phys. Rev. B 56, 8419 (1997).CrossRefGoogle Scholar
11.Gong, J.P., Kawasaki, M., Fujito, K., Tsuchiya, R., Yoshimoto, M., and Koinuma, H., Phys. Rev. B 50, 3280 (1994).CrossRefGoogle Scholar
12.Norton, M.G., Biggers, R.R., Maartense, I., Moser, E.K., and Brown, J.L., Physica C 233, 321 (1994).CrossRefGoogle Scholar
13.Xu, S.Y., Ong, C.K., and Zhang, X., Solid State Commun. 107, 273 (1998).CrossRefGoogle Scholar
14.Hirata, K., Baudenbacher, F., and Kinder, H., Physica C 214, 272 (1993).CrossRefGoogle Scholar
15.Norton, M.G. and Carter, C.B., J. Cryst. Growth 110, 641 (1991).CrossRefGoogle Scholar
16.Tsujino, J. and Shiohaara, Y., Physica C 262, 236 (1996).Google Scholar
17.Schlom, D.G., Anselmetti, D., Bednorz, J.G., Broom, R.F., Catana, A., Frey, T., Gerber, Ch., Güntherodt, H-J., Lang, H.P., and Mannhart, J., Z. Phys. B 86, 163 (1992).CrossRefGoogle Scholar
18.Dam, B. and Stäuble-Pümpin, B., J. Mater. Sci. 9, 217 (1997).Google Scholar
19.Terashima, T., Bando, Y., Iijima, K., Yamamoto, K., Hirata, K., Hayashi, K., Gamigaki, K., and Terauchi, H., Phys. Rev. Lett. 65, 2684 (1990).CrossRefGoogle Scholar
20.Chandrasekhar, N., Achutharaman, V.S., Agrawal, V., and Goldman, A.M., Phys. Rev. B 46, 8565 (1992).CrossRefGoogle Scholar
21.Hawley, M., Raistrick, I.D., Berry, J.G., and Houlton, R.J., Science 251, 1587 (1991).CrossRefGoogle Scholar
22.Méchin, M., Berghuis, P., and Evetts, J.E., Physica C 302, 102 (1998).CrossRefGoogle Scholar
23.Catana, A., Bednorz, J.G., Gerber, Ch., Mannhart, J., and Schlom, D.G., Appl. Phys. Lett. 63, 553 (1993).CrossRefGoogle Scholar
24.Boíkov, Y.A., Ivanov, Z.G., Olson, E., Danilov, V.A., Claeson, T., Shcheglov, M., and Érts, D., Phys. Solid State 37, 478 (1995).Google Scholar
25.Ushida, T., Higa, H., Higashiyama, K., Hirabayashi, I., and Tanaka, S., Appl. Phys. Lett. 59, 860 (1991).CrossRefGoogle Scholar
26.Homma, N., Okayama, S., Takahashi, H., Yoshida, I., Morishita, T., Tanaka, S., Haga, T., and Yamaya, K., Appl. Phys. Lett. 59, 1383 (1991).CrossRefGoogle Scholar
27.Tasker, P.W. and Duffy, D.M., Surf. Sci. 137, 91 (1989).CrossRefGoogle Scholar
28.Haage, T., Habermeier, H-U., and Zegenhagen, J., Surf. Sci. 370, L158 (1997).CrossRefGoogle Scholar
29.Biggers, R.R., Norton, M.G., Martense, I., Peterson, T.L., Moser, E.K., Dempsey, D., Capano, M.A., Talvacchino, J., Brown, J.L., and Wolf, J.D., IEEE Trans. Appl. Supercond. 5, 1241 (1995).CrossRefGoogle Scholar
30.Norton, M.G., Moeckly, B.H., Carter, C.B., and Buhrman, R.A., J. Cryst. Growth 114, 258 (1990).CrossRefGoogle Scholar
31.Haage, T., Zegebhagen, J., Li, J.Q., Habermeier, H-U., Cardona, M., Jooss, C., Warthman, R., Forkl, A., and Kronmüller, H., Phys. Rev. B 56, 8404 (1997).CrossRefGoogle Scholar
32.Haage, T., Zegebhagen, J., Cardona, M., and Habermeier, H-U., J. Alloys Compd. 251, 23 (1997).CrossRefGoogle Scholar
33.Claassen, J.H., Reeves, M.E., and Soulen, R.J. Jr, Rev. Sci. Instrum. 62, 996 (1991).CrossRefGoogle Scholar
34.Matsui, M., Yamamoto, K., Nakajima, M., Shimano, T., and Matsuba, H., Supercond. Sci. Technol. 5, S427 (1992).CrossRefGoogle Scholar
35.Sung, G.Y. and Suh, J.D., Appl. Phys. Lett. 67, 1145 (1995).CrossRefGoogle Scholar
36.Inam, A., Rogers, C.T., Ramesh, R., Remschnig, K., Farrow, L., Hart, D., Venkatesan, K., and Wilkens, B., Appl. Phys. Lett. 57, 2484 (1990).CrossRefGoogle Scholar
37.Shi, W., Shi, J., Sun, J., Yao, W., and Qi, Z., Appl. Phys. Lett. 57, 822 (1990).CrossRefGoogle Scholar
38.Luo, L., Wu, X.D., Dye, R.C., Muenchausen, R.E., Foltyn, S.R., and Coulter, Y., Appl. Phys. Lett. 59, 2043 (1991).CrossRefGoogle Scholar
39.Feenstra, R., Boatner, L.A., Budai, J.D., Christen, D.K., Galloway, M.D., and Poker, D.B., Appl. Phys. Lett. 54, 1063 (1989).CrossRefGoogle Scholar
40.Linker, G., Huttner, D., Meyer, O., Ohkubo, M., and Reiner, J., J Alloys Compd. 251, 65 (1997).CrossRefGoogle Scholar
41.Zegenhagen, J., Siegrist, T., Fontes, E., Berman, L.E., and Patel, J.R., Solid State Commun. 93, 763 (1995).CrossRefGoogle Scholar
42.Tarsa, E.J., Hachfeld, E.A., Quinlan, F.T., Speck, J.S., and Eddy, E., Appl. Phys. Lett. 68, 490 (1996).CrossRefGoogle Scholar
43.Hall, W.H., Proc. Phys. Soc. London Sec. A 62, 741 (1949).CrossRefGoogle Scholar
44.Williamson, G.K. and Hall, W.H., Acta Metall. 1, 22 (1953).CrossRefGoogle Scholar
45.Maurice, J-L., Durand, O., Drouet, M., and Contour, J-P., Thin Solid Films 319, 211 (1998).CrossRefGoogle Scholar
46.Brötz, J., Fuess, H., Haage, T., and Zegenhagen, J., Phys. Rev. B 57, 3679 (1998).CrossRefGoogle Scholar
47.Qadri, S.B., Yang, J.P., Skelton, E.F., and Ratna, B.R., Appl. Phys. Lett. 70, 1020 (1997).CrossRefGoogle Scholar
48.Ryen, L., Olsson, E., Edvardsson, C.N.L, and Helmersson, U., Physica C 304, 307 (1998).CrossRefGoogle Scholar
49.McIntyre, P.C., Cima, M.J., and Roshko, A., J. Appl. Phys. 77, 5263 (1995).CrossRefGoogle Scholar
50.Bauder, M., Baudenbacher, F., and Kinder, H., in Applied Superconductivity 1995 (Inst. Phys. Conf. Ser. 148, 1995), pp. 851854.Google Scholar
51.Mukaida, M., Miyazawa, S., and Sasaura, M., Jpn. J. Appl. Phys. 30, L1474 (1991).CrossRefGoogle Scholar
52.Scheel, H.J., Klemenz, C., Reinhart, F-K., Lang, H.P., and Güntherodt, H-J., Appl. Phys. Lett. 65, 901 (1994).CrossRefGoogle Scholar
53.Dam, B., Koeman, N.J., Rector, J.H., Stäuble-Pümpin, B., Poppe, U., and Griessen, R., Physica C 261, 1 (1996).CrossRefGoogle Scholar
54.Baudenbacher, F., Hirata, K., Berberich, P., Kinder, H., Assmann, W., and Lang, H.P., Physica C 185, 2177 (1991).CrossRefGoogle Scholar
55.Bijlsma, M.E., Bank, D.H.A, Wormeester, H., Silfhout, A.V., and Rogalla, H., J. Alloys Compd. 251, 15 (1997).CrossRefGoogle Scholar
56.Baronnet, A., J. Cryst. Growth 19, 193 (1973).CrossRefGoogle Scholar
57.Pennycook, S.J., Chicholm, M.F., Jesson, D.E., Feenstra, R., Zhu, S., Zheng, X.Y., and Lowndes, D.J., Physica C 202, 1 (1992).CrossRefGoogle Scholar
58.Neugebauer, C.A., in Handbook of Thin Film Technology, edited by Meissel, L.I. and Glang, R. (McGraw-Hill, New York, 1970), Chapter 8, pp. 8–5–8–37.Google Scholar
59.Chernov, A.A., in Modern Crystallography, edited by Queisser, H.J. (Springer, Berlin, Germany, 1984), Vol. 3, pp. 6470.CrossRefGoogle Scholar
60.Shitara, T. and Nishinaga, T., Jpn. J. Appl. Phys. 28, 1212 (1989).CrossRefGoogle Scholar
61.Streiffer, S.K., Lairson, B.M., and Bravmen, J.C., Appl. Phys. Lett. 57(23), 3 (1990).CrossRefGoogle Scholar