Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 30
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Streckova, M. Mudra, E. Orinakova, R. Markusova-Buckova, L. Sebek, M. Kovalcikova, A. Sopcak, T. Girman, V. Dankova, Z. Micusik, M. and Dusza, J. 2016. Nickel and nickel phosphide nanoparticles embedded in electrospun carbon fibers as favourable electrocatalysts for hydrogen evolution. Chemical Engineering Journal, Vol. 303, p. 167.


    Yu, Seung-Geun Yubuta, Kunio Wada, Takeshi and Kato, Hidemi 2016. Three-dimensional bicontinuous porous graphite generated in low temperature metallic liquid. Carbon, Vol. 96, p. 403.


    Tong, Guoxiu Liu, Fangting Wu, Wenhua Du, Fangfang and Guan, Jianguo 2014. Rambutan-like Ni/MWCNT heterostructures: Easy synthesis, formation mechanism, and controlled static magnetic and microwave electromagnetic characteristics. Journal of Materials Chemistry A, Vol. 2, Issue. 20, p. 7373.


    Carneiro, O.C. Anderson, P.E. Rodriguez, N.M. and Baker, R.T.K. 2012. Synthesis of high purity narrow-width carbon nanotubes. Carbon, Vol. 50, Issue. 9, p. 3200.


    Zhang, Chenguang Li, Jiajun Shi, Chunsheng Liu, Enzuo Du, Xiwen Feng, Wei and Zhao, Naiqin 2011. The efficient synthesis of carbon nano-onions using chemical vapor deposition on an unsupported Ni–Fe alloy catalyst. Carbon, Vol. 49, Issue. 4, p. 1151.


    Chen, Long Liu, Haitao Yang, Keli Wang, Jiankang and Wang, Xiaolai 2009. Catalytic synthesis of carbon nanotubes from the decomposition of methane over a Ni–Co/La2O3catalyst. Canadian Journal of Chemistry, Vol. 87, Issue. 1, p. 47.


    Nakagawa, Kiyoharu Oda, Hirokazu Yamashita, Akira Okamoto, Masahiro Sato, Yoichi Gamo, Hidenori Nishitani-Gamo, Mikka Ogawa, Kazuyuki and Ando, Toshihiro 2009. A novel spherical carbon. Journal of Materials Science, Vol. 44, Issue. 1, p. 221.


    Jehng, Jih-Mirn Tung, Wan-Chen and Kuo, Chao-Hao 2008. The formation mechanisms of multi-wall carbon nanotubes over the Ni modified MCM-41 catalysts. Journal of Porous Materials, Vol. 15, Issue. 1, p. 43.


    Jian, Sheng-Rui Chen, Yuan-Tsung Wang, Chih-Feng Wen, Hua-Chiang Chiu, Wei-Ming and Yang, Chu-Shou 2008. The Influences of H2 Plasma Pretreatment on the Growth of Vertically Aligned Carbon Nanotubes by Microwave Plasma Chemical Vapor Deposition. Nanoscale Research Letters, Vol. 3, Issue. 6, p. 230.


    KONO, Yoshio OHFUJI, Hiroaki HIGO, Yuji YAMADA, Akihiro INOUE, Toru IRIFUNE, Tetsuo and FUNAKOSHI, Ken-ichi 2008. Elastic wave velocities and Raman shift of MORB glass at high pressures — Reply. Journal of Mineralogical and Petrological Sciences, Vol. 103, Issue. 6, p. 429.


    Nishikawa, O Taniguchi, M and Ushirozawa, M 2008. Scanning atom probe study of carbon nanotubes and graphite nanofibers with hydrogen terminated defects. Journal of Physics: Conference Series, Vol. 100, Issue. 5, p. 052084.


    Yu, Zhixin Chen, De Rønning, Magnus Tøtdal, Bård Vrålstad, Torbjørn Ochoa-Fernández, Esther and Holmen, Anders 2008. Large-scale synthesis of carbon nanofibers on Ni-Fe-Al hydrotalcite derived catalysts. Applied Catalysis A: General, Vol. 338, Issue. 1-2, p. 147.


    Yu, Zhixin Chen, De Rønning, Magnus Vrålstad, Torbjørn Ochoa-Fernández, Esther and Holmen, Anders 2008. Large-scale synthesis of carbon nanofibers on Ni–Fe–Al hydrotalcite derived catalysts. Applied Catalysis A: General, Vol. 338, Issue. 1-2, p. 136.


    Fernández, Y. Fidalgo, B. Domínguez, A. Arenillas, A. and Menéndez, J.A. 2007. Carbon nanofilament synthesis by the decomposition of CH4/CO2 under microwave heating. Carbon, Vol. 45, Issue. 8, p. 1706.


    Romero, Amaya Garrido, Agustín Nieto-Márquez, Antonio de la Osa, Ana Raquel de Lucas, Antonio and Valverde, José Luís 2007. The influence of operating conditions on the growth of carbon nanofibers on carbon nanofiber-supported nickel catalysts. Applied Catalysis A: General, Vol. 319, p. 246.


    Anderson, Paul E. 2006. A method for characterization and quantification of platelet graphite nanofiber edge crystal structure. Carbon, Vol. 44, Issue. 11, p. 2184.


    Zhou, Jing-Hong Sui, Zhi-Jun Li, Ping Chen, De Dai, Ying-Chun and Yuan, Wei-Kang 2006. Structural characterization of carbon nanofibers formed from different carbon-containing gases. Carbon, Vol. 44, Issue. 15, p. 3255.


    Leroi, P. Cadete Santos Aires, F.J. Goislard de Monsabert, T. Le Poche, H. Dijon, J. Rousset, J.L. and Bertolini, J.C. 2005. Nickel antigorite synthesis and carbon tubular nanostructures formation on antigorite-based nickel particles by acetylene decomposition. Applied Catalysis A: General, Vol. 294, Issue. 2, p. 131.


    Robinson, V. S. Fisher, T. S. Michel, J. A. and Lukehart, C. M. 2005. Work function reduction of graphitic nanofibers by potassium intercalation. Applied Physics Letters, Vol. 87, Issue. 6, p. 061501.


    PARK, COLIN and KEANE, MARK A. 2004. CATALYTIC PRODUCTION OF GRAPHITIC NANORODS VIA THE GAS PHASE DECOMPOSITION OF ETHYLENE OVER SUPPORTED NICKEL. Chemical Engineering Communications, Vol. 191, Issue. 11, p. 1456.


    ×

Growth of graphite nanofibers from the decomposition of CO/H2 over silica-supported iron–nickel particles

  • P. E. Anderson (a1) and N. M. Rodriguez (a1)
  • DOI: http://dx.doi.org/10.1557/JMR.1999.0389
  • Published online: 01 January 2011
Abstract

Extremely fine, tubular graphite nanofibers of varying geometries and degrees of crystallinity were produced by the decomposition of CO and hydrogen over various compositions of nickel–iron particles supported on silica. High-resolution transmission electron microscopy coupled with temperature programmed oxidation studies revealed that, as the iron content of the catalyst was increased, the bimetallic particles precipitated a chainlike graphitic fibrous structure in a stepwise mechanism. The high-iron-content system Fe–Ni (8:2) yielded a small amount of these chainlike graphite fibers that were extremely resilient to oxidation, suggesting a highly crystalline structure. When the catalyst particles consisted of a nickel–iron mixture, Fe–Ni (5:5), there was a decrease in the degree of crystallinity of the fibers (78% graphite) and a corresponding increase in the amount of amorphous carbon precipitated (22% amorphous) within the structure. The high-nickel catalyst Fe–Ni (2:8) generated the largest amount of the tubular nanofiber product. It was significant that there was an increase in the amorphous carbon content (58%) precipitated as opposed to graphitic carbon (42%) in the structures. In some cases, amorphous carbon was deposited inside the graphite core of the nanofibers. The influence of the catalyst composition and nature of the metal-support interaction are key factors in the continuing development of graphite nanofibers possessing desired structures for potential uses in a variety of applications.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1.S. Iijima , Nature 354, 56 (1991).

2.Y. Ando , Jpn. J. Appl. Phys. 32, L134 (1993).

3.T.W. Ebbesen , H. Hiura , J. Fujita , Y. Ochiari , S. Matsui , and K. Tanigaki , Chem. Phys. Lett. 209, 83 (1993).

4.J-C. Charlier and J-P. Issi , Appl. Phys. A 67, 79 (1998).

5.D. Ostling , D. Tomanek , and A. Rosen , Phys. Rev. B 55, R13980 (1997).

6.T.W. Ebbesen and P.M. Ajayan , Nature 358, 220 (1992).

7.Y. Saito , M. Okuda , T. Yoshikawa , A. Kasuya , and Y. Nishina , J. Phys. Chem. 98, 6696 (1994).

8.Y. Wang , J. Am. Chem. Soc. 116, 397 (1994).

9.A. Thess , R. Lee , P.N. Kolaev , H. Dai , P. Petit , J. Robert , C. Xu , Y.H. Lee , S.G. Kim , A.G. Rinzler , D.T. Colbert , G.E. Scuseria , D. Tománek , J.E. Fischer , and R.R. Smalley , Science 273, 483 (1996).

11.A. Chambers , C. Park , R.T.K Baker , and N.M. Rodriguez , J. Phys. Chem. B 102, 4253 (1998).

12.R.T. Yang and J.P. Chen , J. Catal. 115, 52 (1988).

13.N.M. Rodriguez , A. Chambers , and R.T.K Baker , Langmuir 11, 3862 (1995).

14.M.S. Kim , N.M. Rodriguez , and R.T.K Baker , J. Catal. 134, 253 (1992).

15.N.M. Rodriguez , M.S. Kim , and R.T.K Baker , J. Catal. 144, 93 (1993).

16.N. Krishnankutty , C. Park , N.M. Rodriguez , and R.T.K Baker , Catal. Today 37, 295 (1997).

17.C. Park , N.M. Rodriguez , and R.T.K Baker , J. Catal. 169, 212 (1997).

18.Y-X. Zhao , C.W. Bowers , and I.L. Spain , Carbon 26, 291 (1988).

19.R.T.K Baker and J.J. Chludzinski , J. Phys. Chem. 90, 4734 (1986).

21.V. Ivanov , A. Fonseca , J.B. Nagy , A. Lucas , P. Lambin , D. Bernaets , and X.B. Zhang , Carbon 33, 1727 (1995).

22.R.T.K Baker , M.A. Barber , F.S. Feates , P.S. Harris , and R.J. Waite , J. Catal. 30, 86 (1972).

23.R.T.K Baker and R.J. Waite , J. Catal. 37, 101 (1975).

25.R.J. Vreeburg , J. van de Loosdrecht , O.L.J Gijzeman , and J.W. Geus , Catal. Today 10, 329 (1991).

26.S. Sung and R.J. Hoffman , Am. Chem. Soc. 107, 578 (1985).

27.C.M. Mate and G.A. Somorjai , Surf. Sci. 160, 542 (1985).

28.J.M. White , J. Phys. Chem. 87, 915 (1987).

29.S. Akhter and J.M. White , J. Vac. Sci. Technol. A 6, 864 (1988).

32.E. Ruckenstein and Y.F. Chu , J. Catal. 59, 109 (1979).

33.M. Wortis , in Chemistry and Physics of Solid Surfaces VII, edited by R. Vanselow and R. Howe Springer Verlag, Berlin, (1988), p. 367.

34.S.J. Tauster , S.C. Fung , R.T.K Baker and J.A. Horsley , Science 211, 1121 (1981).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×