Skip to main content Accessibility help
×
Home

Hardening mechanisms in irradiated Cu–W alloys

  • Gowtham Sriram Jawaharram (a1), Shen J. Dillon (a1) and Robert S. Averback (a1)

Abstract

This work investigates the relative contributions to strengthening from twinning, solid-solution, precipitation, and irradiation hardening mechanisms in sputtered Cu–W thin films irradiated to different doses. A nanograin solid solution strengthening mechanism with a linear compositional dependence is observed for the as-grown alloys and for the alloy samples irradiated to 0.5 dpa. Solid solution strengthening is the major strengthening mechanism for Cu99.5W0.5 at all irradiation doses. Irradiation induces precipitation in samples with W concentrations greater than or equal to 1% at doses above ≈0.5 dpa. The growth of 1–4 nm precipitates enhances the hardness of these alloys, and the degree of strengthening is determined by the interparticle spacing. While the alloys exhibit steady-state properties after a relatively low dose (≈1 dpa), the different time scales associated with detwinning and damage accumulation in pure Cu lead transients at higher doses (>5 dpa).

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: sdillon@illinois.edu

Footnotes

Hide All

Contributing Editor: Jürgen Eckert

Footnotes

References

Hide All
1. Chen, J., Lu, L., and Lu, K.: Hardness and strain rate sensitivity of nanocrystalline Cu. Scr. Mater. 54, 1913 (2006).
2. Jiang, H., Zhu, Y.T., Butt, D.P., Alexandrov, I.V., and Lowe, T.C.: Microstructural evolution, microhardness and thermal stability of HPT-processed Cu. Mater. Sci. Eng., A 290, 128 (2000).
3. Sanders, P.G., Eastman, J.A., and Weertman, J.R.: Elastic and tensile behavior of nanocrystalline copper and palladium. Acta Mater. 45, 4019 (1997).
4. Wang, Y.M. and Ma, E.: Temperature and strain rate effects on the strength and ductility of nanostructured copper. Appl. Phys. Lett. 83, 3165 (2003).
5. Özerinç, S., Tai, K., Vo, N.Q., Bellon, P., Averback, S., and King, W.P.: Grain boundary doping strengthens nanocrystalline copper alloys. Scr. Mater. 67, 720 (2012).
6. Mula, S., Bahmanpour, H., Mal, S., Kang, P.C., Atwater, M., Jian, W., Scattergood, R.O., and Koch, C.C.: Thermodynamic feasibility of solid solubility extension of Nb in Cu and their thermal stability. Mater. Sci. Eng., A 539, 330 (2012).
7. Khalajhedayati, A. and Rupert, T.J.: High-temperature stability and grain boundary complexion formation in a nanocrystalline Cu–Zr alloy. JOM 67, 2788 (2015).
8. Darling, K.A., Roberts, A.J., Mishin, Y., Mathaudhu, S.N., and Kecskes, L.J.: Grain size stabilization of nanocrystalline copper at high temperatures by alloying with tantalum. J. Alloys Compd. 573, 142 (2013).
9. Rajgarhia, R.K., Spearot, D.E., and Saxena, A.: Plastic deformation of nanocrystalline copper-antimony alloys. J. Mater. Res. 25, 411 (2010).
10. Anderoglu, O., Misra, A., Wang, H., and Zhang, X.: Thermal stability of sputtered Cu films with nanoscale growth twins. J. Appl. Phys. 103, 094322 (2008).
11. Lu, L., Schwaiger, R., Shan, Z.W., Dao, M., Lu, K., and Suresh, S.: Nano-sized twins induce high rate sensitivity of flow stress in pure copper. Acta Mater. 53, 2169 (2005).
12. Ma, E., Wang, Y.M., Lu, Q.H., Sui, M.L., Lu, L., and Lu, K.: Strain hardening and large tensile elongation in ultrahigh-strength nano-twinned copper. Appl. Phys. Lett. 85, 4932 (2004).
13. Zhang, X., Beach, J.A., Wang, M., Bellon, P., and Averback, R.S.: Precipitation kinetics of dilute Cu–W alloys during low-temperature ion irradiation. Acta Mater. 120, 46 (2016).
14. Arshad, S.N., Lach, T.G., Ivanisenko, J., Setman, D., Bellon, P., Dillon, S.J., and Averback, R.S.: Self-organization of Cu–Ag during controlled severe plastic deformation at high temperatures. J. Mater. Res. 30, 1943 (2015).
15. Hosemann, P., Shin, C., and Kiener, D.: Small scale mechanical testing of irradiated materials. J. Mater. Res. 30, 1231 (2017).
16. Valiev, R.Z. and Alexandrov, I.V.: Paradox of strength and ductility in metals processed by severe plastic deformation. J. Mater. Res. 17, 5 (2002).
17. Raghu, T., Sundaresan, R., Ramakrishnan, P., and Rama Mohan, T.R.: Synthesis of nanocrystalline copper-tungsten alloys by mechanical alloying. Mater. Sci. Eng., A 304–306, 438 (2001).
18. Nastasi, M., Saris, F.W., Hung, L.S., and Mayer, J.W.: Stability of amorphous Cu/Ta and Cu/W alloys. J. Appl. Phys. 58, 3052 (1985).
19. Vo, N.Q., Chee, S.W., Schwen, D., Zhang, X., Bellon, P., and Averback, R.S.: Microstructural stability of nanostructured Cu alloys during high-temperature irradiation. Scr. Mater. 63, 929 (2010).
20. Liu, J.C., Li, J., and Mayer, J.W.: Temperature effect on ion-irradiation-induced grain growth in Cu thin films. J. Appl. Phys. 67(5), 2354 (1990).
21. Tai, K., Averback, R.S., Bellon, P., Vo, N., Ashkenazy, Y., and Dillon, S.J.: Orientation relationship formed during irradiation induced precipitation of W in Cu. J. Nucl. Mater. 454, 126 (2014).
22. Vüllers, F.T.N. and Spolenak, R.: From solid solutions to fully phase separated interpenetrating networks in sputter deposited “immiscible” W–Cu thin films. Acta Mater. 99, 213 (2015).
23. Hosemann, P., Kiener, D., Wang, Y., and Maloy, S.A.: Issues to consider using nano indentation on shallow ion beam irradiated materials. J. Nucl. Mater. 425, 136 (2012).
24. Tai, K., Averback, R.S., Bellon, P., Ashkenazy, Y., and Stumphy, B.: Temperature dependence of irradiation-induced creep in dilute nanostructured Cu–W alloys. J. Nucl. Mater. 422, 8 (2012).
25. Tabor, D.: The hardness and strength of metals. J. Inst. Met. 79(7), 1 (1951).
26. Rupert, T.J., Trenkle, J.C., and Schuh, C.A.: Enhanced solid solution effects on the strength of nanocrystalline alloys. Acta Mater. 59, 1619 (2011).
27. Youssef, K.M., Scattergood, R.O., Murty, K.L., and Koch, C.C.: Ultratough nanocrystalline copper with a narrow grain size distribution. Appl. Phys. Lett. 85, 929 (2004).
28. Was, G.S.: Fundamentals of Radiation Materials Science (Springer Berlin Heidelberg, New York, USA, 2007).
29. Yuan, R., Beyerlein, I.J., and Zhou, C.: Coupled crystal orientation-size effects on the strength of nano crystals. Sci. Rep. 6, 1 (2016).
30. Gelles, D.S.: A. C. E.-10 on Nuclear Technology, and Applications: Effects of Radiation on Materials: 17th International Symposium (ASTM, Philadelphia, Pennsylvania, 1996).
31. Zhang, Z. and Chen, D.L.: Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength. Scr. Mater. 54, 1321 (2006).
32. Chen, Y., Li, J., Yu, K.Y., Wang, H., Kirk, M.A., Li, M., and Zhang, X.: In situ studies on radiation tolerance of nanotwinned Cu. Acta Mater. 111, 148 (2016).
33. Jiang, H., Klemmer, T.J., Barnard, J.A., Doyle, W.D., and Payzant, E.A.: Epitaxial growth of Cu(111) films on Si(110) by magnetron sputtering: Orientation and twin growth. Thin Solid Films 315, 13 (1998).
34. Chen, Y., Wang, H., Kirk, M.A., Li, M., Wang, J., and Zhang, X.: Radiation induced detwinning in nanotwinned Cu. Scr. Mater. 130, 37 (2017).
35. Li, N., Wang, J., Wang, Y.Q., Serruys, Y., Nastasi, M., and Misra, A.: Incoherent twin boundary migration induced by ion irradiation in Cu. J. Appl. Phys. 113, 023508 (2013).
36. Li, N., Hattar, K., and Misra, A.: In situ probing of the evolution of irradiation-induced defects in copper. J. Nucl. Mater. 439, 185 (2013).
37. Dub, S.N., Lim, Y.Y., and Chaudhri, M.M.: Nanohardness of high purity Cu(111) single crystals: The effect of indenter load and prior plastic sample strain. J. Appl. Phys. 107 (2010).

Keywords

Type Description Title
WORD
Supplementary materials

Jawaharram Supplementary Material
Supplementary Material

 Word (304 KB)
304 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed