Skip to main content Accessibility help
×
Home

Heterogeneous deformation of two-dimensional materials for emerging functionalities

  • Jin Myung Kim (a1), Chullhee Cho (a2), Ezekiel Y. Hsieh (a2) and SungWoo Nam (a3)

Abstract

Atomically thin 2D materials exhibit strong intralayer covalent bonding and weak interlayer van der Waals interactions, offering unique high in-plane strength and out-of-plane flexibility. While atom-thick nature of 2D materials may cause uncontrolled intrinsic/extrinsic deformation in multiple length scales, it also provides new opportunities for exploring coupling between heterogeneous deformations and emerging functionalities in controllable and scalable ways for electronic, optical, and optoelectronic applications. In this review, we discuss (i) the mechanical characteristics of 2D materials, (ii) uncontrolled inherent deformation and extrinsic heterogeneity present in 2D materials, (iii) experimental strategies for controlled heterogeneous deformation of 2D materials, (iv) 3D structure-induced novel functionalities via crumple/wrinkle structure or kirigami structures, and (v) heterogeneous strain-induced emerging functionalities in exciton and phase engineering. Overall, heterogeneous deformation offers unique advantages for 2D materials research by enabling spatial tunability of 2D materials' interactions with photons, electrons, and molecules in a programmable and controlled manner.

Copyright

Corresponding author

a)Address all correspondence to these authors. e-mail: jk25@illinois.edu

Footnotes

Hide All
c)

These authors contributed equally to this work.

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

Footnotes

References

Hide All
1.Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., and Geim, A.K.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U. S. A. 102, 10451 (2005).
2.Akinwande, D., Petrone, N., and Hone, J.: Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014).
3.Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., and Strano, M.S.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699 (2012).
4.Guinea, F., Katsnelson, M.I., and Geim, A.K.: Energy gaps and a zero-field quantum hall effect in graphene by strain engineering. Nat. Phys. 6, 30 (2010).
5.Levy, N., Burke, S.A., Meaker, K.L., Panlasigui, M., Zettl, A., Guinea, F., Castro Neto, A.H., and Crommie, M.F.: Strain-induced pseudo-magnetic fields greater than 300 tesla in graphene nanobubbles. Science 329, 544 (2010).
6.Lee, C., Wei, X., Kysar, J.W., and Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385 (2008).
7.Novoselov, K.S., Geim, A.K., V Morozov, S., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666 (2004).
8.Zhao, Q., Nardelli, M.B., and Bernholc, J.: Ultimate strength of carbon nanotubes: A theoretical study. Phys. Rev. B: Condens. Matter Mater. Phys. 65, 1 (2002).
9.Frank, I.W., Tanenbaum, D.M., Van Der Zande, A.M., and McEuen, P.L.: Mechanical properties of suspended graphene sheets. J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. 25, 2558 (2007).
10.Wei, Y., Wang, B., Wu, J., Yang, R., and Dunn, M.L.: Bending rigidity and Gaussian bending stiffness of single-layered graphene. Nano Lett. 13, 26 (2013).
11.Vijayaraghavan, V. and Zhang, L.: Effective mechanical properties and thickness determination of boron nitride nanosheets using molecular dynamics simulation. Nanomaterials 8, 546 (2018).
12.Boldrin, L., Scarpa, F., Chowdhury, R., and Adhikari, S.: Effective mechanical properties of hexagonal boron nitride nanosheets. Nanotechnology 22, 505702 (2011).
13.Jiang, J.W., Qi, Z., Park, H.S., and Rabczuk, T.: Elastic bending modulus of single-layer molybdenum disulfide (MoS2): Finite thickness effect. Nanotechnology 24, 435705 (2013).
14.Lai, K., Zhang, W.B., Zhou, F., Zeng, F., and Tang, B.Y.: Bending rigidity of transition metal dichalcogenide monolayers from first-principles. J. Phys. D: Appl. Phys. 49, 185301 (2016).
15.Verma, D., Hourahine, B., Frauenheim, T., James, R.D., and Dumitricǎ, T.: Directional-dependent thickness and bending rigidity of phosphorene. Phys. Rev. B 94, 121404(R) (2016).
16.Meyer, J.C., Geim, A.K., Katsnelson, M.I., Novoselov, K.S., Booth, T.J., and Roth, S.: The structure of suspended graphene sheets. Nature 446, 60 (2007).
17.Lui, C.H., Liu, L., Mak, K.F., Flynn, G.W., and Heinz, T.F.: Ultraflat graphene. Nature 462, 339 (2009).
18.Fasolino, A., Los, J.H., and Katsnelson, M.I.: Intrinsic ripples in graphene. Nat. Mater. 6, 858 (2007).
19.Mermin, N.D.: Crystalline order in two dimensions. Phys. Rev. 176, 250 (1968).
20.Wang, W., Yang, S., and Wang, A.: Observation of the unexpected morphology of graphene wrinkle on copper substrate. Sci. Rep. 7, 1 (2017).
21.Deng, B., Pang, Z., Chen, S., Li, X., Meng, C., Li, J., Liu, M., Wu, J., Qi, Y., Dang, W., Yang, H., Zhang, Y., Zhang, J., Kang, N., Xu, H., Fu, Q., Qiu, X., Gao, P., Wei, Y., Liu, Z., and Peng, H.: Wrinkle-free single-crystal graphene wafer grown on strain-engineered substrates. ACS Nano 11, 12337 (2017).
22.Germanium, H., Lee, J., Lee, E.K., Joo, W., Jang, Y., Kim, B., Lim, J.Y., Choi, S., Ahn, S.J., Ahn, J.R., Park, M., Yang, C., Choi, B.L., Hwang, S., and Whang, D.: Wafer-scale growth of single-crystal. Science 344, 286 (2014).
23.Ghorbanfekr-Kalashami, H., Vasu, K.S., Nair, R.R., Peeters, F.M., and Neek-Amal, M.: Dependence of the shape of graphene nanobubbles on trapped substance. Nat. Commun. 8, 15844 (2017).
24.Sanchez, D.A., Dai, Z., Wang, P., Cantu-Chavez, A., Brennan, C.J., Huang, R., and Lu, N.: Mechanics of spontaneously formed nanoblisters trapped by transferred 2D crystals. Proc. Natl. Acad. Sci. U. S. A. 115, 7884 (2018).
25.Khestanova, E., Guinea, F., Fumagalli, L., Geim, A.K., and Grigorieva, I.V.: Universal shape and pressure inside bubbles appearing in van der Waals heterostructures. Nat. Commun. 7, 12587 (2016).
26.Dai, Z., Hou, Y., Sanchez, D.A., Wang, G., Brennan, C.J., Zhang, Z., Liu, L., and Lu, N.: Interface-governed deformation of nanobubbles and nanotents formed by two-dimensional materials. Phys. Rev. Lett. 121, 266101 (2018).
27.Palacios-Berraquero, C., Kara, D.M., Montblanch, A.R.P., Barbone, M., Latawiec, P., Yoon, D., Ott, A.K., Loncar, M., Ferrari, A.C., and Atatüre, M.: Large-scale quantum-emitter arrays in atomically thin semiconductors. Nat. Commun. 8, 15093 (2017).
28.Bark, C.W., Felker, D.A., Wang, Y., Zhangd, Y., Jang, H.W., Folkman, C.M., Park, J.W., Baek, S.H., Zhou, H., Fong, D.D., Pan, X.Q., Tsymbal, E.Y., Rzchowski, M.S., and Eom, C.B.: Tailoring a two-dimensional electron gas at the LaAlO3/SrTiO3 (001) interface by epitaxial strain. Proc. Natl. Acad. Sci. U. S. A. 108, 4720 (2011).
29.Xie, S., Tu, L., Han, Y., Huang, L., Kang, K., Lao, K.U., Poddar, P., Park, C., Muller, D.A., DiStasio, R.A., and Park, J.: Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain. Science 359, 1131 (2018).
30.Lou, S., Liu, Y., Yang, F., Lin, S., Zhang, R., Deng, Y., Wang, M., Tom, K.B., Zhou, F., Ding, H., Bustillo, K.C., Wang, X., Yan, S., Scott, M., Minor, A., and Yao, J.: Three-dimensional architecture enabled by strained two-dimensional material heterojunction. Nano Lett. 18, 1819 (2018).
31.Jiang, J.W.: Misfit strain-induced buckling for transition-metal dichalcogenide lateral heterostructures: A molecular dynamics study. Acta Mech. Solida Sin. 32, 17 (2019).
32.Kumar, S., Kaczmarczyk, A., and Gerardot, B.D.: Strain-induced spatial and spectral isolation of quantum emitters in mono- and bilayer WSe2. Nano Lett. 15, 7567 (2015).
33.Branny, A., Kumar, S., Proux, R., and Gerardot, B.D.: Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor. Nat. Commun. 8, 15053 (2017).
34.Luo, Y., Shepard, G.D., Ardelean, J.V., Rhodes, D.A., Kim, B., Barmak, K., Hone, J.C., and Strauf, S.: Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities. Nat. Nanotechnol. 13, 1137 (2018).
35.Reserbat-Plantey, A., Kalita, D., Han, Z., Ferlazzo, L., Autier-Laurent, S., Komatsu, K., Li, C., Weil, R., Ralko, A., Marty, L., Guéron, S., Bendiab, N., Bouchiat, H., and Bouchiat, V.: Strain superlattices and macroscale suspension of graphene induced by corrugated substrates. Nano Lett. 14, 5044 (2014).
36.Kern, J., Niehues, I., Tonndorf, P., Schmidt, R., Wigger, D., Schneider, R., Stiehm, T., Michaelis de Vasconcellos, S., Reiter, D.E., Kuhn, T., and Bratschitsch, R.: Nanoscale positioning of single-photon emitters in atomically thin WSe2. Adv. Mater. 28, 7101 (2016).
37.Cai, T., Dutta, S., Aghaeimeibodi, S., Yang, Z., Nah, S., Fourkas, J.T., and Waks, E.: Coupling emission from single localized defects in two-dimensional semiconductor to surface plasmon polaritons. Nano Lett. 17, 6564 (2017).
38.Li, H., Contryman, A.W., Qian, X., Ardakani, S.M., Gong, Y., Wang, X., Weisse, J.M., Lee, C.H., Zhao, J., Ajayan, P.M., Li, J., Manoharan, H.C., and Zheng, X.: Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide. Nat. Commun. 6, 7381 (2015).
39.Liu, T., Liu, S., Tu, K.H., Schmidt, H., Chu, L., Xiang, D., Martin, J., Eda, G., Ross, C.A., and Garaj, S.: Crested two-dimensional transistors. Nat. Nanotechnol. 14, 223 (2019).
40.Choi, J., Kim, H.J., Wang, M.C., Leem, J., King, W.P., and Nam, S.: Three-dimensional integration of graphene via swelling, shrinking, and adaptation. Nano Lett. 15, 4525 (2015).
41.Wang, M.C., Chun, S., Han, R.S., Ashraf, A., Kang, P., and Nam, S.: Heterogeneous, three-dimensional texturing of graphene. Nano Lett. 15, 1829 (2015).
42.Leem, J., Wang, M.C., Kang, P., and Nam, S.: Mechanically self-assembled, three-dimensional graphene-gold hybrid nanostructures for advanced nanoplasmonic sensors. Nano Lett. 15, 7684 (2015).
43.Deng, S., Rhee, D., Lee, W-K., Che, S., Keisham, B., Berry, V., and Odom, T.W.: Graphene wrinkles enable spatially defined chemistry. Nano Lett. 19, 5640 (2019).
44.Lee, W.K., Kang, J., Chen, K.S., Engel, C.J., Bin Jung, W., Rhee, D., Hersam, M.C., and Odom, T.W.: Multiscale, hierarchical patterning of graphene by conformal wrinkling. Nano Lett. 16, 7121 (2016).
45.Kang, P., Wang, M.C., Knapp, P.M., and Nam, S.W.: Crumpled graphene photodetector with enhanced, strain-tunable, and wavelength-selective photoresponsivity. Adv. Mater. 28, 4639 (2016).
46.Choi, J., Mun, J., Wang, M.C., Ashraf, A., Kang, S-W., and Nam, S.: Hierarchical, dual-scale structures of atomically thin MoS2 for tunable wetting. Nano Lett. 17, 1756 (2017).
47.Quereda, J., San-Jose, P., Parente, V., Vaquero-Garzon, L., Molina-Mendoza, A.J., Agraït, N., Rubio-Bollinger, G., Guinea, F., Roldán, R., and Castellanos-Gomez, A.: Strong modulation of optical properties in black phosphorus through strain-engineered rippling. Nano Lett. 16, 2931 (2016).
48.Dhakal, K.P., Roy, S., Jang, H., Chen, X., Yun, W.S., Kim, H., Lee, J., Kim, J., and Ahn, J.H.: Local strain induced band gap modulation and photoluminescence enhancement of multilayer transition metal dichalcogenides. Chem. Mater. 29, 5124 (2017).
49.Kim, M., Kang, P., Leem, J., and Nam, S.W.: A stretchable crumpled graphene photodetector with plasmonically enhanced photoresponsivity. Nanoscale 9, 4058 (2017).
50.Krishna, A., Kim, J.M., Leem, J., Wang, M.C., Nam, S., and Lee, J.: Ultraviolet to mid-infrared emissivity control by mechanically reconfigurable graphene. Nano Lett. 19, 5086 (2019).
51.Snapp, P., Kang, P., Leem, J., and Nam, S.W.: Colloidal photonic crystal strain sensor integrated with deformable graphene phototransducer. Adv. Funct. Mater. 28, 1902216 (2019).
52.Leem, J., Lee, Y., Wang, M.C., Kim, J.M., Mun, J., Haque, M.F., Kang, S-W., and Nam, S.: Crack-assisted, localized deformation of van der Waals materials for enhanced strain confinement. 2D Mater. 6, 044001 (2019).
53.Zang, J., Ryu, S., Pugno, N., Wang, Q., Tu, Q., Buehler, M.J., and Zhao, X.: Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nat. Mater. 12, 321 (2013).
54.Thomas, A.V., Andow, B.C., Suresh, S., Eksik, O., Yin, J., Dyson, A.H., and Koratkar, N.: Controlled crumpling of graphene oxide films for tunable optical transmittance. Adv. Mater. 27, 3256 (2015).
55.Castellanos-Gomez, A., Roldán, R., Cappelluti, E., Buscema, M., Guinea, F., Van Der Zant, H.S.J., and Steele, G.A.: Local strain engineering in atomically thin MoS2. Nano Lett. 13, 5361 (2013).
56.Yang, S., Wang, C., Sahin, H., Chen, H., Li, Y., Li, S.S., Suslu, A., Peeters, F.M., Liu, Q., Li, J., and Tongay, S.: Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering. Nano Lett. 15, 1660 (2015).
57.Whitby, R.L.D.: Chemical control of graphene architecture: Tailoring shape and properties. ACS Nano 8, 9733 (2014).
58.Chen, W., Gui, X., Liang, B., Liu, M., Lin, Z., Zhu, Y., and Tang, Z.: Controllable fabrication of large-area wrinkled graphene on a solution surface. ACS Appl. Mater. Interfaces 8, 10977 (2016).
59.Guinea, F., Horovitz, B., and Le Doussal, P.: Gauge fields, ripples and wrinkles in graphene layers. Solid State Commun. 149, 1140 (2009).
60.Wang, M.C., Leem, J., Kang, P., Choi, J., Knapp, P., Yong, K., and Nam, S.W.: Mechanical instability driven self-assembly and architecturing of 2D materials. 2D Mater. 4, 022002 (2017).
61.Kang, P., Kim, K.H., Park, H.G., and Nam, S.W.: Mechanically reconfigurable architectured graphene for tunable plasmonic resonances. Light: Sci. Appl. 7, 17 (2018).
62.Kubiak, K.J., Wilson, M.C.T., Mathia, T.G., and Carval, P.: Wettability versus roughness of engineering surfaces. Wear 271, 523 (2011).
63.Lee, W., Liu, Y., Lee, Y., Sharma, B.K., Shinde, S.M., Kim, S.D., Nan, K., Yan, Z., Han, M., Huang, Y., Zhang, Y., Ahn, J.H., and Rogers, J.A.: Two-dimensional materials in functional three-dimensional architectures with applications in photodetection and imaging. Nat. Commun. 9, 1417 (2018).
64.Zheng, W., Huang, W., Gao, F., Yang, H., Dai, M., Liu, G., Yang, B., Zhang, J., Fu, Y.Q., Chen, X., Qiu, Y., Jia, D., Zhou, Y., and Hu, P.: Kirigami-inspired highly stretchable nanoscale devices using multidimensional deformation of monolayer MoS2. Chem. Mater. 30, 6063 (2018).
65.Blees, M.K., Barnard, A.W., Rose, P.A., Roberts, S.P., McGill, K.L., Huang, P.Y., Ruyack, A.R., Kevek, J.W., Kobrin, B., Muller, D.A., and McEuen, P.L.: Graphene kirigami. Nature 524, 204 (2015).
66.Yong, K., De, S., Hsieh, E.Y., Leem, J., Aluru, N.R., and Nam, S.: Kirigami-inspired strain-insensitive sensors based on atomically-thin materials. Mater. Today (2019). In press - https://doi.org/10.1016/j.mattod.2019.08.013.
67.Gant, P., Huang, P., Pérez de Lara, D., Guo, D., Frisenda, R., and Castellanos-Gomez, A.: A strain tunable single-layer MoS2 photodetector. Mater. Today 27, 8 (2019).
68.Li, H., Tsai, C., Koh, A.L., Cai, L., Contryman, A.W., Fragapane, A.H., Zhao, J., Han, H.S., Manoharan, H.C., Abild-Pedersen, F., Nørskov, J.K., and Zheng, X.: Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 15, 48 (2015).
69.Conley, H.J., Wang, B., Ziegler, J.I., Haglund, R.F., Pantelides, S.T., and Bolotin, K.I.: Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 13, 3626 (2013).
70.Duerloo, K.A.N., Li, Y., and Reed, E.J.: Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat. Commun. 5, 4214 (2014).
71.Wang, C., Liu, Y., Li, L., and Tan, H.: Anisotropic thermal conductivity of graphene wrinkles. Nanoscale 6, 5703 (2014).
72.Cui, L., Du, X., Wei, G., and Feng, Y.: Thermal conductivity of graphene wrinkles: A molecular dynamics simulation. J. Phys. Chem. C 120, 23807 (2016).
73.Deng, S., Sumant, A.V., and Berry, V.: Strain engineering in two-dimensional nanomaterials beyond graphene. Nano Today 22, 14 (2018).
74.Dai, Z., Liu, L., and Zhang, Z.: Strain engineering of 2D materials: Issues and opportunities at the interface. Adv. Mater. 31, 1 (2019).
75.Mueller, T. and Malic, E.: Exciton physics and device application of two-dimensional transition metal dichalcogenide semiconductors. npj 2D Mater. Appl. 2, 1 (2018).
76.Desai, S.B., Seol, G., Kang, J.S., Fang, H., Battaglia, C., Kapadia, R., Ager, J.W., Guo, J., and Javey, A.: Strain-induced indirect to direct bandgap transition in multilayer WSe2. Nano Lett. 14, 4592 (2014).
77.Niehues, I., Schmidt, R., Drüppel, M., Marauhn, P., Christiansen, D., Selig, M., Berghäuser, G., Wigger, D., Schneider, R., Braasch, L., Koch, R., Castellanos-Gomez, A., Kuhn, T., Knorr, A., Malic, E., Rohlfing, M., Michaelis De Vasconcellos, S., and Bratschitsch, R.: Strain control of exciton-phonon coupling in atomically thin semiconductors. Nano Lett. 18, 1751 (2018).
78.Feng, J., Qian, X., Huang, C.W., and Li, J.: Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat. Photonics 6, 866 (2012).
79.Mangu, V.S., Zamiri, M., Brueck, S.R.J., and Cavallo, F.: Strain engineering, efficient excitonic photoluminescence, and exciton funnelling in unmodified MoS2 nanosheets. Nanoscale 9, 16602 (2017).
80.Tyurnina, A.V., Bandurin, D.A., Khestanova, E., Kravets, V.G., Koperski, M., Guinea, F., Grigorenko, A.N., Geim, A.K., and Grigorieva, I.V.: Strained bubbles in van der Waals heterostructures as local emitters of photoluminescence with adjustable wavelength. ACS Photonics 6, 516 (2019).
81.Cordovilla Leon, D.F., Li, Z., Jang, S.W., Cheng, C.H., and Deotare, P.B.: Exciton transport in strained monolayer WSe2. Appl. Phys. Lett. 113, 252101 (2018).
82.Chakraborty, C., Kinnischtzke, L., Goodfellow, K.M., Beams, R., and Vamivakas, A.N.: Voltage-controlled quantum light from an atomically thin semiconductor. Nat. Nanotechnol. 10, 507 (2015).
83.He, Y.M., Clark, G., Schaibley, J.R., He, Y., Chen, M.C., Wei, Y.J., Ding, X., Zhang, Q., Yao, W., Xu, X., Lu, C.Y., and Pan, J.W.: Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10, 497 (2015).
84.Koperski, M., Nogajewski, K., Arora, A., Cherkez, V., Mallet, P., Veuillen, J.Y., Marcus, J., Kossacki, P., and Potemski, M.: Single photon emitters in exfoliated WSe2 structures. Nat. Nanotechnol. 10, 503 (2015).
85.Srivastava, A., Sidler, M., Allain, A.V., Lembke, D.S., Kis, A., and Imamoglu, A.: Optically active quantum dots in monolayer WSe2. Nat. Nanotechnol. 10, 491 (2015).
86.Iff, O., Tedeschi, D., Martín-Sánchez, J., Moczała-Dusanowska, M., Tongay, S., Yumigeta, K., Taboada-Gutiérrez, J., Savaresi, M., Rastelli, A., Alonso-González, P., Höfling, S., Trotta, R., and Schneider, C.: Strain-tunable single photon sources in WSe2 monolayers. Nano Lett. 19, 6931 (2019).
87.Kim, H., Moon, J.S., Noh, G., Lee, J., and Kim, J-H.: Position and frequency control of strain-induced quantum emitters in WSe2 monolayers. Nano Lett. 19, 7534 (2019).
88.Voiry, D., Yamaguchi, H., Li, J., Silva, R., Alves, D.C.B., Fujita, T., Chen, M., Asefa, T., Shenoy, V.B., Eda, G., and Chhowalla, M.: Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 12, 850 (2013).
89.Cho, S., Kim, S., Kim, J.H., Zhao, J., Seok, J., Keum, D.H., Baik, J., Choe, D.H., Chang, K.J., Suenaga, K., Kim, S.W., Lee, Y.H., and Yang, H.: Phase patterning for ohmic homojunction contact in MoTe2. Science 349, 625 (2015).
90.Zhang, F., Zhang, H., Krylyuk, S., Milligan, C.A., Zhu, Y., Zemlyanov, D.Y., Bendersky, L.A., Burton, B.P., Davydov, A.V., and Appenzeller, J.: Electric-field induced structural transition in vertical MoTe2- and Mo1−xWxTe2-based resistive memories. Nat. Mater. 18, 55 (2019).
91.Hou, W., Azizimanesh, A., Sewaket, A., Peña, T., Watson, C., Liu, M., Askari, H., and Wu, S.M.: Strain-based room-temperature non-volatile MoTe2 ferroelectric phase change transistor. Nat. Nanotechnol. 14, 668 (2019).
92.Huang, H.H., Fan, X., Singh, D.J., Chen, H., Jiang, Q., and Zheng, W.T.: Controlling phase transition for single-layer MTe2 (M = Mo and W): Modulation of the potential barrier under strain. Phys. Chem. Chem. Phys. 18, 4086 (2016).
93.Song, S., Keum, D.H., Cho, S., Perello, D., Kim, Y., and Lee, Y.H.: Room temperature semiconductor-metal transition of MoTe2 thin films engineered by strain. Nano Lett. 16, 188 (2016).
94.Apte, A., Kochat, V., Rajak, P., Krishnamoorthy, A., Manimunda, P., Hachtel, J.A., Idrobo, J.C., Syed Amanulla, S.A., Vashishta, P., Nakano, A., Kalia, R.K., Tiwary, C.S., and Ajayan, P.M.: Structural phase transformation in strained monolayer MoWSe2 alloy. ACS Nano 12, 3468 (2018).
95.Yang, H., Kim, S.W., Chhowalla, M., and Lee, Y.H.: Structural and quantum-state phase transition in van der Waals layered materials. Nat. Phys. 13, 931 (2017).
96.Webster, L. and Yan, J.A.: Strain-tunable magnetic anisotropy in monolayer CrCl3, CrBr3, and CrI3. Phys. Rev. B 98, 144411 (2018).
97.Wu, Z., Yu, J., and Yuan, S.: Strain-tunable magnetic and electronic properties of monolayer CrI3. Phys. Chem. Chem. Phys. 21, 7750 (2019).
98.Butov, L.V., Lai, C.W., Ivanov, A.L., Gossard, A.C., and Chemla, D.S.: Towards Bose–Einstein condensation of excitons in potential traps. Nature 417, 47 (2002).
99.High, A.A., Leonard, J.R., Hammack, A.T., Fogler, M.M., Butov, L.V., Kavokin, A.V., Campman, K.L., and Gossard, A.C.: Spontaneous coherence in a cold exciton gas. Nature 483, 584 (2012).
100.Zhang, C., Li, M.Y., Tersoff, J., Han, Y., Su, Y., Li, L.J., Muller, D.A., and Shih, C.K.: Strain distributions and their influence on electronic structures of WSe2-MoS2 laterally strained heterojunctions. Nat. Nanotechnol 13, 152 (2018).

Keywords

Heterogeneous deformation of two-dimensional materials for emerging functionalities

  • Jin Myung Kim (a1), Chullhee Cho (a2), Ezekiel Y. Hsieh (a2) and SungWoo Nam (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.