Skip to main content
×
Home
    • Aa
    • Aa

High performance half-Heusler thermoelectric materials with refined grains and nanoscale precipitates

  • Cui Yu (a1), Hanhui Xie (a2), Chenguang Fu (a2), Tiejun Zhu (a3) and Xinbing Zhao (a4)...
Abstract
Abstract

(Zr, Hf)NiSn-based half-Heusler alloys with refined grains were prepared by melt spinning and spark plasma sintering. The grain size of the melt-spun (MS) thin ribbons varied from ∼500 nm to ∼3 μm. X-ray diffraction analysis showed that single phased alloys were obtained. Nanoscale precipitates dispersed in the matrix could be observed in both the MS ribbons and sintered bulk samples, which increased the carrier concentration and electrical conductivity. The lattice thermal conductivity decreased by more than 20% below 100 K and 5–20% from 200 to 1000 K, compared with the levitation melted counterparts, due to the refined grain sizes. The maximum dimensionless figure of merit ZT value reached ∼0.9 for the MS Hf0.6Zr0.4NiSn0.98Sb0.02sample.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: zhutj@zju.edu.cn
References
Hide All
1.Snyder G.J. and Toberer E.S.: Complex thermoelectric materials. Nat. Mater. 7, 105 (2008).
2.Pei Y.Z., LaLonde A., Iwanaga S., and Snyder G.J.: High thermoelectric figure of merit in heavy hole dominated PbTe. Energy Environ. Sci. 4, 2085 (2011).
3.Zhu T.J., Xiao K., Yu C., Shen J.J., Yang S.H., Zhou A.J., Zhao X.B., and He J.: Effects of yttrium doping on the thermoelectric properties of Hf0.6Zr0.4NiSn0.98Sb0.02 half-Heusler alloys. J. Appl. Phys. 108, 044903 (2010).
4.Uher C., Yang J., Hu S., Morelli D.T., and Meisner G.P.: Transport properties of pure and doped MNiSn (M=Zr, Hf). Phys. Rev. B 59, 8615 (1999).
5.Hohl H., Ramirez A.P., Goldmann C., Ernst G., Woelfing B., and Bucher E.: Efficient dopants for ZrNiSn-based thermoelectric materials. J. Phys. Condens. Matter 11, 1697 (1999).
6.Ogut S. and Robe K.M.: Band gap and stability in the ternary intermetallic compounds NiSnM (M=Ti, Zr, Hf): A first-principles study. Phys. Rev. B 51, 10443 (1995).
7.Chaput L., Tobola J., Pécheur P., and Scherrer H.: Electronic structure and thermopower of Ni(Ti0.5Hf0.5)Sn and related half-Heusler phases. Phys. Rev. B 73, 045121 (2006).
8.Bhattacharya S., Tritt T.M., Xia Y., Ponnambalam V., Poon S.J., and Thadhani N.: Grain structure effects on the lattice thermal conductivity of Ti-based half-Heusler alloys. Appl. Phys. Lett. 81, 43 (2002).
9.Bhattacharya S., Skove M.J., Russell M., Tritt T.M., Xia Y., Ponnambalam V., Poon S.J., and Thadhani N.: Effect of boundary scattering on the thermal conductivity of TiNiSn-based half-Heusler alloys. Phys. Rev. B 77, 184203 (2008).
10.Sharp J.W., Poon S.J., and Goldsmid H.J.: Boundary scattering and the thermoelectric figure of merit. Phys. Status Solidi A 187, 507 (2001).
11.Shen Q., Chen L., Goto T., Hirai T., Yang J., Meisner G.P., and Uher C.: Effects of partial substitution of Ni by Pd on the thermoelectric properties of ZrNiSn-based half-Heusler compounds. Appl. Phys. Lett. 79, 4165 (2001).
12.Culp S.R., Poon S.J., Hickman N., Tritt T.M., and Blumm J.: Effect of substitutions on the thermoelectric figure of merit of half-Heusler phases at 800 °C. Appl. Phys. Lett. 88, 042106 (2006).
13.Yu C., Zhu T.J., Shi R.Z., Zhang Y., Zhao X.B., and He J.: High-performance half-Heusler thermoelectric materials Hf1-xZrxNiSn1-ySby prepared by levitation melting and spark plasma sintering, Acta Mater. 57, 2757 (2009).
14.Zhu T.J., Zhao X.B., and Hu S.H.: Phase transition of FeSi2 and Fe2Si5 based alloys prepared by melt spinning. J. Mater. Sci. Lett. 20, 1831 (2001).
15.Hasaka M., Morimura T., Sato H., and Akashima H.: Thermoelectric properties of Tix(HfyZr1-y)1-xNiSn0.998Sb0.002 half-Heusler ribbons. J. Electron. Mater. 8, 1320 (2009).
16.Yu C., Zhu T.J., Xiao K., Shen J.J., Yang S.H., and Zhao X.B.: Reduced grain sizes and improved thermoelectric properties in melt spun (Hf, Zr)NiSn half-Heusler alloys. J. Electron. Mater. 39, 2008 (2010).
17.Yu C., Zhu T.J., Xiao K., Shen J.J., and Zhao X.B.: Microstructure and thermoelectric properties of (Zr, Hf)NiSn-based half-Heusler alloys by melt spinning and spark plasma sintering. Funct. Mater. Lett. 3, 4 (2010).
18.Yu C., Zhu T.J., Yang S.H., Shen J.J., and Zhao X.B.: Preparation and thermoelectric properties of polycrystalline nonstoichiometric Yb14MnSb11 Zintl compounds. Phys. Status Solidi RRL 4, 212 (2010).
19.Vandersande J.W., Zoltan A., and Wood C.: Accurate determination of specific heat at high temperatures using the flash diffusivity method. Int. J. Thermophys. 10, 251 (1989).
20.Kimura Y., Tanoguchi T., and Kita T.: Vacancy site occupation by Co and Ir in half-Heusler ZrNiSn and conversion of the thermoelectric properties from n-type to p-type. Acta Mater. 58, 4354 (2010).
21.Gofryk K., Kaczorowski D., Plackowski T., Mucha J., Leithe-Jasper A., Schnelle W., and Grin Y.: Magnetic, transport, and thermal properties of the half-Heusler compounds ErPdSb and YPdSb. Phys. Rev. B 75, 224426 (2007).
22.Kimura Y., Ueno H., and Mishima Y.: Thermoelectric properties of directionally solidified half-Heusler (Ma0.5, Mb0.5)NiSn (Ma, Mb = Hf, Zr, Ti) alloys. J. Electron. Mater. 38, 934 (2009).
23.He J., Hitchcock D., Bredeson I., Hickman N., Tritt T.M., and Zhang S.N.: Probing lattice dynamics of Cd2Re2O7 pyrochlore: Thermal transport and thermodynamics study. Phys. Rev. B 81, 134302 (2010).
24.Cahill D.G., Watson S.K., and Pohl R.O.: Lower limit to the thermal conductivity of disordered crystals, Phys. Rev. B 46, 6131 (1992).
25.Berret J.F. and Meissner M.: How universal are the low temperature acoustic properties of glasses? Z. Phys. B: Condens. Matter 70, 65 (1988).
26.Yang J., Morelli D.T., Meisner G.P., Chen W., Dyck J.S., and Uher C.: Influence of electron-phonon interaction on the lattice thermal conductivity of Co1-xNixSb3. Phys. Rev. B 65, 094115 (2002).
27.Tang M.B. and Zhao J.T.: Low temperature transport and thermal properties of half-Heusler alloy Zr0.25Hf0.25Ti0.5NiSn. J. Alloys Compd. 475, 5 (2009).
28.Qiu P.F., Yang J., Huang X.Y., Chen X.H., and Chen L.D.: Enhanced thermoelectric performance by the combination of alloying and doping in TiCoSb-based half-Heusler compounds. Appl. Phys. Lett. 96, 152105 (2010).
29.Kim W., Zide J., Gossard A., Klenov D., Stemmer S., Shakouri A., and Majumdar A.: Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys. Rev. Lett. 96, 045901 (2006).
30.Kawaharada Y., Uneda H., Muta H., Kurosaki K., and Yamanaka S.: High temperature thermoelectric properties of CoN1-xMxSn half-Heusler compounds. J. Alloys Compd. 64, 59 (2004).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 3
Total number of PDF views: 48 *
Loading metrics...

Abstract views

Total abstract views: 128 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st October 2017. This data will be updated every 24 hours.