Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-12T14:32:25.078Z Has data issue: false hasContentIssue false

High photoresponsivity and light-induced carrier conversion in RGO/TSCuPc hybrid phototransistors

Published online by Cambridge University Press:  18 October 2018

Tanusri Pal*
Affiliation:
Nanoscience Technology Center, University of Central Florida, Orlando, Florida 32826, USA
Daeha Joung
Affiliation:
Nanoscience Technology Center, University of Central Florida, Orlando, Florida 32826, USA; and Department of Physics, University of Central Florida, Orlando, Florida 32826, USA
Surajit Ghosh
Affiliation:
Nanoscience Technology Center, University of Central Florida, Orlando, Florida 32826, USA
Anindarupa Chunder
Affiliation:
Nanoscience Technology Center, University of Central Florida, Orlando, Florida 32826, USA; and Department of Chemistry, University of Central Florida, Orlando, Florida 32826, USA
Lei Zhai
Affiliation:
Nanoscience Technology Center, University of Central Florida, Orlando, Florida 32826, USA; and Department of Chemistry, University of Central Florida, Orlando, Florida 32826, USA
Saiful I. Khondaker*
Affiliation:
Nanoscience Technology Center, University of Central Florida, Orlando, Florida 32826, USA; and Department of Physics, University of Central Florida, Orlando, Florida 32826, USA
*
a)Address all correspondence to these authors. e-mail: tanusri.pal@gmail.com
b)e-mail: saiful@ucf.edu
Get access

Abstract

Reduced graphene oxide (RGO) and its composites have a great potential for their applications in optoelectronic devices. In particular, small molecules can be used for tailoring optoelectronic properties of RGO. Here, we report the fabrication of a hybrid RGO/tetrasulfonate salt of the copper phthalocyanine (RGO/TSCuPc) nanocomposite phototransistor. The device shows p-type transistor behavior in the dark which changes to ambipolar behavior at the lower light intensity, and then shows a complete n-type property at the higher light intensity. The photoresponsivity of the device can be tuned by gate voltages, and the best photoresponsivity is recorded to be as high as ∼4.6 A/W for positive gate voltage and ∼6.3 A/W with a negative sign for negative gate voltage under solar light irradiation. The observations suggest that the photogenerated free electrons of TSCuPc molecules can be injected efficiently onto RGO sheets, resulting in increases in electron conduction and hole quenching.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

c)

These authors contributed equally to this work.

d)

Present address: Department of Physics, Midnapore College, Midnapore 721101, India.

e)

Present address: Department of Physics and Technophysics, Vidyasagar University, Midnapore 721102, India.

References

REFERENCES

Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S.I., and Seal, S.: Graphene based materials: Past, present and future. Prog. Mater. Sci. 56, 1178 (2011).CrossRefGoogle Scholar
Wan, X., Huang, Y., and Chen, Y.: Focusing on energy and optoelectronic applications: A journey for graphene and graphene oxide at large scale. Acc. Chem. Res. 45, 598 (2012).CrossRefGoogle ScholarPubMed
Bonaccorso, F., Colombo, L., Yu, G., Stoller, M., Tozzini, V., Ferrari, A.C., Ruoff, R.S., and Pellegrini, V.: Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347, 41 (2015).CrossRefGoogle ScholarPubMed
Compton, O.C., Jain, B., Dikin, D.A., Abouimrane, A., Amine, K., and Nguyen, S.T.: Chemically active reduced graphene oxide with tunable C/O ratios. ACS Nano 5, 4380 (2011).CrossRefGoogle ScholarPubMed
Luo, Z., Vora, P.M., Mele, E.J., Johnson, A.T.C., and Kikkawa, J.M.: Photoluminescence and band gap modulation in graphene oxide. Appl. Phys. Lett. 94, 111909 (2009).CrossRefGoogle Scholar
Tung, V.C., Allen, M.J., Yang, Y., and Kaner, R.B.: High-throughput solution processing of large-scale graphene. Nat. Nanotechnol. 4, 25 (2009).CrossRefGoogle ScholarPubMed
Compton, O.C. and Nguyen, S.T.: Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials. Small 6, 711 (2010).CrossRefGoogle ScholarPubMed
Voiry, D., Yang, J., Kupferberg, J., Fullon, R., Lee, C., Jeong, H.Y., Shin, H.S., and Chhowalla, M.: High-quality graphene via microwave reduction of solution-exfoliated graphene oxide. Science 353, 1413 (2016).CrossRefGoogle ScholarPubMed
Eda, G., Lin, Y.Y., Mattevi, C., Yamaguchi, H., Chen, H.A., Chen, I.S., Chen, C.W., and Chhowalla, M.: Blue photoluminescence from chemically derived graphene oxide. Adv. Mater. 22, 505 (2010).CrossRefGoogle ScholarPubMed
Chang, H., Sun, Z., Yuan, Q., Ding, F., Tao, X., Yan, F., and Zheng, Z.: Thin film field‐effect phototransistors from bandgap‐tunable, solution‐processed, few‐layer reduced graphene oxide films. Adv. Mater. 22, 4872 (2010).CrossRefGoogle ScholarPubMed
Ghosh, S., Sarker, B.K., Chunder, A., Zhai, L., and Khondaker, S.I.: Position dependent photodetector from large area reduced graphene oxide thin films. Appl. Phys. Lett. 96, 163109 (2010).CrossRefGoogle Scholar
Zhu, Y., Murali, S., Stoller, M.D., Ganesh, K.J., Cai, W., Ferreira, P.J., Pirkle, A., Wallace, R.M., Cychosz, K.A., Thommes, M., Su, D., Stach, E.A., and Ruoff, R.S.: Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537 (2011).CrossRefGoogle ScholarPubMed
Sun, Y.Q., Wu, Q.O., and Shi, G.Q.: Graphene based new energy materials. Energy Environ. Sci. 4, 1113 (2011).CrossRefGoogle Scholar
Joung, D. and Khondaker, S.I.: Efros-Shklovskii variable-range hopping in reduced graphene oxide sheets of varying carbon sp 2 fraction. Phys. Rev. B 86, 235423 (2012).CrossRefGoogle Scholar
Cao, Y., Zhu, J., Xu, J., and He, J.: Tunable near-infrared photovoltaic and photoconductive properties of reduced graphene oxide thin films by controlling the number of reduced graphene oxide bilayers. Carbon 77, 1111 (2014).CrossRefGoogle Scholar
Liu, Q., Liu, Z.F., Zhang, X.Y., Zhang, N., Yang, L.Y., Yin, S.G., and Chen, Y.S.: Organic photovoltaic cells based on an accepto of soluble graphene. Appl. Phys. Lett. 92, 223303 (2008).CrossRefGoogle Scholar
Radich, J.G. and Kamat, P.V.: Origin of reduced graphene oxide enhancements in electrochemical energy storage. ACS Catal. 2, 807 (2012).CrossRefGoogle Scholar
Liu, Q., Liu, Z.F., Zhang, X.Y., Yang, L.Y., Zhang, N., Pan, G.L., Yin, S.G., Chen, Y.S., and Wei, J.: Polymer photovoltaic cells based on solution‐processable graphene and P3HT. Adv. Funct. Mater. 19, 894 (2009).CrossRefGoogle Scholar
Guo, C.X., Yang, H.B., Sheng, Z.M., Lu, Z.S., Song, Q.L., and Li, C.M.: Layered graphene/quantum dots for photovoltaic devices. Angew. Chem., Int. Ed. 49, 3014 (2010).CrossRefGoogle ScholarPubMed
Cao, A., Liu, Z., Chu, S., Wu, M., Ye, Z., Cai, Z., Chang, Y., Wang, S., Gong, Q., and Liu, Y.: A facile one‐step method to produce graphene–CdS quantum dot nanocomposites as promising optoelectronic materials. Adv. Mater. 22, 103 (2010).CrossRefGoogle ScholarPubMed
Chang, H. and Wu, H.: Graphene‐based nanomaterials: Synthesis, properties, and optical and optoelectronic applications. Adv. Funct. Mater. 23, 1984 (2013).CrossRefGoogle Scholar
Yang, J., Heo, M., Lee, H.J., Park, S-M., Kim, J.Y., and Shin, H.S.: Reduced graphene oxide (rGO)-wrapped fullerene (C60) wires. ACS Nano 5, 8365 (2011).CrossRefGoogle Scholar
Chen, J., Xu, F., Wu, J., Qasim, K., Zhou, Y., Lei, W., Sun, L.T., and Zhang, Y.: Flexible photovoltaic cells based on a graphene–CdSe quantum dot nanocomposite. Nanoscale 4, 441 (2012).CrossRefGoogle ScholarPubMed
Chunder, A., Pal, T., Khondaker, S.I., and Zhai, L.: Reduced graphene oxide/copper phthalocyanine composite and its optoelectrical properties. J. Phys. Chem. C 114, 15129 (2010).CrossRefGoogle Scholar
Ghosh, S., Pal, T., Joung, D., and Khondaker, S.I.: One pot synthesis of RGO/PbS nanocomposite and its near infrared photoresponse study. Appl. Phys. A 107, 995 (2012).CrossRefGoogle Scholar
Geng, X., Niu, L., Xing, Z., Song, R., Liu, G., Sun, M., Cheng, G., Zhong, H., Liu, Z., Zhang, Z., Sun, L., Xu, H., Lu, L., and Liu, L.: Aqueous-processable noncovalent chemically converted graphene–quantum dot composites for flexible and transparent optoelectronic films. Adv. Mater. 22, 638 (2010).CrossRefGoogle ScholarPubMed
Das, P., Chakraborty, K., Chakrabarty, S., Ghosh, S., and Pal, T.: Reduced graphene oxide—Zinc phthalocyanine composites as fascinating material for optoelectronic and photocatalytic applications. ChemistrySelect 2, 3297 (2017).CrossRefGoogle Scholar
Ando, S. and Kimachi, A.: Correlation image sensor: Two-dimensional matched detection of amplitude-modulated light. IEEE Trans. Electron Devices 50, 2059 (2003).CrossRefGoogle Scholar
Goossens, S., Navickaite, G., Monasterio, C., Gupta, S., Piqueras, J.J., Pérez, R., Burwell, G., Nikitskiy, I., Lasanta, T., Galán, T., Puma, E., Centeno, A., Pesquera, A., Zurutuza, A., Konstantatos, G., and Koppens, F.: Broadband image sensor array based on graphene–CMOS integration. Nat. Photonics 11, 366 (2017).CrossRefGoogle Scholar
Pal, T., Arif, M., and Khondaker, S.I.: High performance organic phototransistor based on regioregular poly(3-hexylthiophene). Nanotechnology 21, 325201 (2010).CrossRefGoogle Scholar
Johnson, N.M. and Chiang, A.: Highly photosensitive transistors in single‐crystal silicon thin films on fused silica. Appl. Phys. Lett. 45, 1102 (1984).CrossRefGoogle Scholar
Kaneko, Y., Koike, N., Tsutsui, K., and Tsukada, T.: Amorphous silicon phototransistors. Appl. Phys. Lett. 56, 650 (1990).CrossRefGoogle Scholar
Choi, C.S., Kang, H.S., Choi, W.Y., Kim, H.J., Choi, W.J., Kim, D.H., Jang, K.C., and Seo, K.S.: High optical responsivity of InAlAs–InGaAs metamorphic high-electron mobility transistor on GaAs substrate with composite channels. IEEE Photonics Technol. Lett. 15, 846 (2003).CrossRefGoogle Scholar
Forrest, S.R.: The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911 (2004).CrossRefGoogle Scholar
Heeger, A.J.: Semiconducting and metallic polymers: The fourth generation of polymeric materials (nobel lecture). Angew. Chem., Int. Ed. 40, 2591 (2001).3.0.CO;2-0>CrossRefGoogle Scholar
Facchetti, A., Yoon, M.H., and Marks, T.J.: Gate dielectrics for organic field-effect transistors: New opportunities for organic electronics. Adv. Mater. 17, 1705 (2005).CrossRefGoogle Scholar
Fang, Z., Wang, Y., Liu, Z., Schlather, A., Ajayan, P.M., Koppens, F.H.L., Nordlander, P., and Halas, N.J.: Plasmon-induced doping of graphene. ACS Nano 6, 10222 (2012).CrossRefGoogle ScholarPubMed
Wang, Z., Zhang, J., Xing, R., Yuan, J., Yan, D., and Han, Y.: Micropatterning of organic semiconductor microcrystalline materials and ofet fabrication by “hot lift off”. J. Am. Chem. Soc. 125, 15278 (2003).CrossRefGoogle Scholar
Bao, Z., Lovinger, A.J., and Dodabalapur, A.: Organic field‐effect transistors with high mobility based on copper phthalocyanine. Appl. Phys. Lett. 69, 3066 (1996).CrossRefGoogle Scholar
Hatton, R.A., Blanchard, N.P., Stolojan, V., Miller, A.J., and Silva, S.R.P.: Nanostructured copper phthalocyanine-sensitized multiwall carbon nanotube films. Langmuir 23, 6424 (2007).CrossRefGoogle ScholarPubMed
Joung, D., Chunder, A., Zhai, L., and Khondaker, S.I.: High yield fabrication of chemically reduced graphene oxide field effect transistors by dielectrophoresis. Nanotechnology 21, 165202 (2010).CrossRefGoogle ScholarPubMed
Shin, H.J., Kim, S.M., Yoon, S.M., Benayad, A., Kim, K.K., Kim, S.J., Park, H.K., Choi, J.Y., and Lee, Y.H.: Tailoring electronic structures of carbon nanotubes by solvent with electron-donating and -withdrawing groups. J. Am. Chem. Soc. 130, 2062 (2008).CrossRefGoogle ScholarPubMed
Joung, D., Chunder, A., Zhai, L., and Khondaker, S.I.: Space charge limited conduction with exponential trap distribution in reduced graphene oxide sheets. Appl. Phys. Lett. 97, 093105 (2010).CrossRefGoogle Scholar
Zhen, L., Shang, L., Liu, M., Tu, D., Ji, Z., Liu, X., Liu, G., Liu, J., and Wang, H.: Light-induced hysteresis characteristics of copper phthalocyanine organic thin-film transistors. Appl. Phys. Lett. 93, 203302 (2008).CrossRefGoogle Scholar
Zhang, D., Gan, L., Cao, Y., Wang, Q., Qi, L., and Guo, X.: Understanding charge transfer at pbs‐decorated graphene surfaces toward a tunable photosensor. Adv. Mater. 24, 2715 (2012).CrossRefGoogle Scholar
Kim, K., Park, H.J., Woo, B-C., Kim, K.J., Kim, G.T., and Yun, W.S.: Electric property evolution of structurally defected multilayer graphene. Nano Lett. 8, 3092 (2008).CrossRefGoogle ScholarPubMed
Su, Q., Pang, S., Alijani, V., Li, C., Feng, X., and Mu¨llen, K.: Composites of graphene with large aromatic molecules. Adv. Funct. Mater. 18, 3191 (2009).CrossRefGoogle Scholar
Ryu, S., Liu, L., Berciaud, S., Yu, Y-J., Liu, H., Kim, P., Flynn, G.W., and Brus, L.E.: Atmospheric oxygen binding and hole doping in deformed graphene on a SiO₂ substrate. Nano Lett. 10, 4944 (2010).CrossRefGoogle ScholarPubMed
Chakraborty, K., Chakrabarty, S., Das, P., Ghosh, S., and Pal, T.: UV-assisted synthesis of reduced graphene oxide zinc sulfide composite with enhanced photocatalytic activity. Mater. Sci. Eng., B 204, 8 (2016).CrossRefGoogle Scholar
Li, X., Wang, H., Robinson, J.T., Sanchez, H., Diankov, G., and Dai, H.: Simultaneous nitrogen doping and reduction of graphene oxide. J. Am. Chem. Soc. 131, 15939 (2009).CrossRefGoogle ScholarPubMed
Wang, X., Li, X., Zhang, L., Yoon, Y., Weber, P.K., Wang, H., Guo, J., and Dai, H.: N-doping of graphene through electrothermal reactions with ammonia. Science 324, 768 (2009).CrossRefGoogle ScholarPubMed
Farmer, D.B., Golizadeh-Mojarad, R., Perebeinos, V., Lin, Y.M., Tulevski, G.S., Tsang, J.C., and Avouris, P.: Chemical doping and electron–hole conduction asymmetry in graphene devices. Nano Lett. 9, 388 (2009).CrossRefGoogle ScholarPubMed
Chen, J.H., Jang, C., Adam, S., Fuhrer, M.S., Williams, E.D., and Ishigami, M.: Charged-impurity scattering in graphene. Nat. Phys. 4, 377 (2008).CrossRefGoogle Scholar
McCreary, K.M., Pi, K., Swartz, A.G., Han, W., Bao, W., Lau, C.N., Guinea, F., Katsnelson, M.I., and Kawakami, R.K.: Effect of cluster formation on graphene mobility. Phys. Rev. B 81, 115453 (2010).CrossRefGoogle Scholar
Pi, K., McCreary, K.M., Bao, W., Han, W., Chiang, Y.F., Li, Y., Tsai, S.W., Lau, C.N., and Kawakami, R.K.: Electronic doping and scattering by transition metals on graphene. Phys. Rev. B 80, 075406 (2009).CrossRefGoogle Scholar
Pei, S. and Cheng, H-M.: The reduction of graphene oxide. Carbon 50, 3210 (2012).CrossRefGoogle Scholar
Kong, B-S., Geng, J., and Jung, H-T.: Layer-by-layer assembly of graphene and gold nanoparticles by vacuum filtration and spontaneous reduction of gold ions. Chem. Commun., 0, 2174 (2009).CrossRefGoogle Scholar
Liu, S., Li, J., Shen, Q., Cao, Y., Guo, X., Zhang, G., Feng, C., Zhang, J., Liu, Z., Steigerwald, M.L., Xu, D., and Nuckolls, C.: Mirror-image photoswitching of individual single-walled carbon nanotube transistors coated with titanium dioxide. Angew. Chem., Int. Ed. 48, 4759 (2009).CrossRefGoogle ScholarPubMed
Zhang, H., Guo, X., Hui, J., Hu, S., Xu, W., and Zhu, D.: Interface engineering of semiconductor/dielectric heterojunctions toward functional organic thin-film transistors. Nano Lett. 11, 4939 (2011).CrossRefGoogle ScholarPubMed