Skip to main content

Highly piezoresistive compliant nanofibrous sensors for tactile and epidermal electronic applications

  • Saeid Soltanian (a1), Amir Servati (a2), Rowshan Rahmanian (a3), Frank Ko (a4) and Peyman Servati (a5)...

Soft, sensitive, and conformable strain sensors can provide tactile sensation to prosthetic limbs and can be used for epidermal and wearable health monitoring. High strain sensitivity is often achieved by using piezoelectric ceramics, such as lead zirconate titanate (PZT), with known issues for large-area scalability, rigidity, and biocompatibility. Here, we report a nature-inspired, piezoresistive, soft, and benign core–shell nanofibrous sensor that exhibits an unprecedented gauge factor in excess of 60, arising from a reversible disjointing/jointing of a large number of interfiber junctions, consequently changing the current path and resistance in response to both tensile and compressive strains. Nanofiber textile sensor arrays are demonstrated with fast, low-voltage, accurate, and repeatable sensing over 1000 cycles for epidermal monitoring of limb and musculoskeletal movements and radial pulse waveform, for real-time monitoring of simulated intermittent Parkinson's tremors, and for biaxial tactile sensing and localization of point of touch.

Corresponding author
a) Address all correspondence to this author. e-mail:
Hide All
1. Segev-Bar M. and Haick H.: Flexible sensors based on nanoparticles. ACS Nano 7(10), 83668378 (2013).
2. Dobie W. and Isaac P.C.G.: Electric Resistance Strain Gauges (English Universities Press Limited, London, UK, 1948).
3. Kulha P., Babchenko O., Kromka A., Husak M., and Haenen K.: Design and fabrication of piezoresistive strain gauges based on nanocrystalline diamond layers. Vacuum 86(6), 689692 (2012).
4. Kon S., Oldham K., and Horowitz R.: Piezoresistive and piezoelectric MEMS strain sensors for vibration detection. Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 65292V, (International Society for Optics and Photonics, 2007).
5. Wu J.M., Chen C.Y., Zhang Y., Chen K.H., Yang Y., Hu Y., He J.H., and Wang Z.L.: Ultrahigh sensitive piezotronic strain sensors based on a ZnSnO3 nanowire/microwire. ACS Nano 6(5), 43694374 (2012).
6. Riekeberg S., Buttner J., and Muller J.: A carbon nanotube based temperature independent strain sensor on a flexible polymer. IEEE Sens. J. 647651 (2010).
7. Li Z., Dharap P., Nagarajaiah S., Barrera E.V., and Kim J.D.: Carbon nanotube film sensors. Adv. Mater. 16(7), 640643 (2004).
8. Kang I., Schulz M.J., Kim J.H., Shanov V., and Shi D.: A carbon nanotube strain sensor for structural health monitoring. Smart Mater. Struct. 15(3), 737 (2006).
9. Chang N.K., Su C.C., and Chang S.H.: Fabrication of single-walled carbon nanotube flexible strain sensors with high sensitivity. Appl. Phys. Lett. 92(6), 063501 (2008).
10. Laxminarayana K. and Jalili N.: Functional nanotube-based textiles: Pathway to next generation fabrics with enhanced sensing capabilities. Text. Res. J. 75(9), 670680 (2005).
11. Lu Q., Cao H., Song X., Yan H., Gan Z., and Liu S.: Improved electrical resistance-pressure strain sensitivity of carbon nanotube network/polydimethylsiloxane composite using filtration and transfer process. Chin. Sci. Bull. 55(3), 326330 (2010).
12. Dharap P., Li Z., Nagarajaiah S., and Barrera E.V.: Nanotube film based on single-wall carbon nanotubes for strain sensing. Nanotechnology 15(3), 379382 (2004).
13. Yamada T., Hayamizu Y., Yamamoto Y., Yomogida Y., Izadi-Najafabadi A., Futaba D.N., and Hata K.: A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 6(5), 296301 (2011).
14. Su C.C., Liu T., Chang N.K., Wang B.R., and Chang S.H.: Two dimensional carbon nanotube based strain sensor. Sens. Actuators, A 176, 124129 (2012).
15. Takei K., Takahashi T., Ho J.C., Ko H., Gillies A.G., Leu P.W., Fearing R.S., and Javey A.: Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat. Mater. 9(10), 821826 (2010).
16. Hu N., Karube Y., Arai M., Watanabe T., Yan C., Li Y., Liu Y., and Fukunaga H.: Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor. Carbon 48(3), 680687 (2010).
17. Hu N., Karube Y., and Fukunaga H.: A strain sensor from a polymer/carbon nanotube nanocomposite. Iutam Symposium on Multi-Functional Material Structures and Systems 19, 7786 (2010).
18. Kang J.H., Park C., scholl J.A., Brazin A.H., Holloway N.M., High J.W., and Harrison J.S.: Piezoresistive characteristics of single wall carbon nanotube/polyimide nanocomposites. J. Polym. Sci., Part B: Polym. Phys. 47(10), 9941003 (2009).
19. Pham G.T., Park Y.B., Liang Z., Zhang C., and Wang B.: Processing and modeling of conductive thermoplastic/carbon nanotube films for strain sensing. Composites, Part B 39(1), 209216 (2008).
20. Hu N., Karube Y., Yan C., Masuda Z., and Fukunaga H.: Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor. Acta Mater. 56(13), 29292936 (2008).
21. Lee Y., Bae S., Jang H., Jang S., Zhu S.E., Sim S.H., Song Y., Hong B.H., and Ahn J.H.: Wafer-scale synthesis and transfer of graphene films. Nano Lett. 10(2), 490493 (2010).
22. Cochrane C., Lewandowski M., and Koncar V.: A flexible strain sensor based on a conductive polymer composite for in situ measurement of parachute canopy deformation. Sensors 10(9), 82918303 (2010).
23. Mattmann C., Clemens F., and Troster G.: Sensor for measuring strain in textile. Sensors 8(6), 37193732 (2008).
24. Hemmerling T.M. and Le N.: Brief review: Neuromuscular monitoring: An update for the clinician. Can. J. Anaesth. 54(1), 5872 (2007).
25. Bonato P.: Advances in wearable technology and applications in physical medicine and rehabilitation. J. Neuroeng. Rehabil. 2(1), 2 (2005).
26. Van Duinen H., Yu W.S., and Gandevia S.C.: Limited ability to extend the digits of the human hand independently with extensor digitorum. J. Physiol. 587(20), 47994810 (2009).
27. Abbruzzese G., Morena M., Spadavechia L., and Schieppati M.: Response of arm flexor muscles to magnetic and electrical brain-stimulation during shortening and lengthening tasks in man. J. Physiol. 481(2), 499507 (1994).
28. McCully K.K. and Faulkner J.A.: Injury to skeletal-muscle fibers of mice following lengthening contractions. J. Appl. Physiol. 59(1), 119126 (1985).
29. Widrick J.J. and Barker T.: Peak power of muscles injured by lengthening contractions. Muscle Nerve 34(4), 470477 (2006).
30. Millasseau S.C., Kelly R.P., Ritter J.M., and Chowienczyk P.J.: Determination of age-related increases in large artery stiffness by digital pulse contour analysis. Clin. Sci. 103(4), 371377 (2002).
31. Hirata K., Kawakami M., and O'Rourke M.F.: Pulse wave analysis and pulse wave velocity - a review of blood pressure interpretation 100 years after Korotkov. Circ. J. 70(10), 12311239 (2006).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 2
Total number of PDF views: 64 *
Loading metrics...

Abstract views

Total abstract views: 176 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd January 2018. This data will be updated every 24 hours.