Skip to main content
    • Aa
    • Aa

Highly piezoresistive compliant nanofibrous sensors for tactile and epidermal electronic applications

  • Saeid Soltanian (a1), Amir Servati (a2), Rowshan Rahmanian (a3), Frank Ko (a4) and Peyman Servati (a5)...

Soft, sensitive, and conformable strain sensors can provide tactile sensation to prosthetic limbs and can be used for epidermal and wearable health monitoring. High strain sensitivity is often achieved by using piezoelectric ceramics, such as lead zirconate titanate (PZT), with known issues for large-area scalability, rigidity, and biocompatibility. Here, we report a nature-inspired, piezoresistive, soft, and benign core–shell nanofibrous sensor that exhibits an unprecedented gauge factor in excess of 60, arising from a reversible disjointing/jointing of a large number of interfiber junctions, consequently changing the current path and resistance in response to both tensile and compressive strains. Nanofiber textile sensor arrays are demonstrated with fast, low-voltage, accurate, and repeatable sensing over 1000 cycles for epidermal monitoring of limb and musculoskeletal movements and radial pulse waveform, for real-time monitoring of simulated intermittent Parkinson's tremors, and for biaxial tactile sensing and localization of point of touch.

Corresponding author
a) Address all correspondence to this author. e-mail:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

M. Segev-Bar and H. Haick : Flexible sensors based on nanoparticles. ACS Nano 7(10), 83668378 (2013).

P. Kulha , O. Babchenko , A. Kromka , M. Husak , and K. Haenen : Design and fabrication of piezoresistive strain gauges based on nanocrystalline diamond layers. Vacuum 86(6), 689692 (2012).

S. Kon , K. Oldham , and R. Horowitz : Piezoresistive and piezoelectric MEMS strain sensors for vibration detection. Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 65292V, (International Society for Optics and Photonics, 2007).

J.M. Wu , C.Y. Chen , Y. Zhang , K.H. Chen , Y. Yang , Y. Hu , J.H. He , and Z.L. Wang : Ultrahigh sensitive piezotronic strain sensors based on a ZnSnO3 nanowire/microwire. ACS Nano 6(5), 43694374 (2012).

Z. Li , P. Dharap , S. Nagarajaiah , E.V. Barrera , and J.D. Kim : Carbon nanotube film sensors. Adv. Mater. 16(7), 640643 (2004).

I. Kang , M.J. Schulz , J.H. Kim , V. Shanov , and D. Shi : A carbon nanotube strain sensor for structural health monitoring. Smart Mater. Struct. 15(3), 737 (2006).

N.K. Chang , C.C. Su , and S.H. Chang : Fabrication of single-walled carbon nanotube flexible strain sensors with high sensitivity. Appl. Phys. Lett. 92(6), 063501 (2008).

K. Laxminarayana and N. Jalili : Functional nanotube-based textiles: Pathway to next generation fabrics with enhanced sensing capabilities. Text. Res. J. 75(9), 670680 (2005).

Q. Lu , H. Cao , X. Song , H. Yan , Z. Gan , and S. Liu : Improved electrical resistance-pressure strain sensitivity of carbon nanotube network/polydimethylsiloxane composite using filtration and transfer process. Chin. Sci. Bull. 55(3), 326330 (2010).

P. Dharap , Z. Li , S. Nagarajaiah , and E.V. Barrera : Nanotube film based on single-wall carbon nanotubes for strain sensing. Nanotechnology 15(3), 379382 (2004).

T. Yamada , Y. Hayamizu , Y. Yamamoto , Y. Yomogida , A. Izadi-Najafabadi , D.N. Futaba , and K. Hata : A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 6(5), 296301 (2011).

C.C. Su , T. Liu , N.K. Chang , B.R. Wang , and S.H. Chang : Two dimensional carbon nanotube based strain sensor. Sens. Actuators, A 176, 124129 (2012).

K. Takei , T. Takahashi , J.C. Ho , H. Ko , A.G. Gillies , P.W. Leu , R.S. Fearing , and A. Javey : Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat. Mater. 9(10), 821826 (2010).

N. Hu , Y. Karube , M. Arai , T. Watanabe , C. Yan , Y. Li , Y. Liu , and H. Fukunaga : Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor. Carbon 48(3), 680687 (2010).

J.H. Kang , C. Park , J.A. scholl , A.H. Brazin , N.M. Holloway , J.W. High , and J.S. Harrison : Piezoresistive characteristics of single wall carbon nanotube/polyimide nanocomposites. J. Polym. Sci., Part B: Polym. Phys. 47(10), 9941003 (2009).

G.T. Pham , Y.B. Park , Z. Liang , C. Zhang , and B. Wang : Processing and modeling of conductive thermoplastic/carbon nanotube films for strain sensing. Composites, Part B 39(1), 209216 (2008).

N. Hu , Y. Karube , C. Yan , Z. Masuda , and H. Fukunaga : Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor. Acta Mater. 56(13), 29292936 (2008).

Y. Lee , S. Bae , H. Jang , S. Jang , S.E. Zhu , S.H. Sim , Y. Song , B.H. Hong , and J.H. Ahn : Wafer-scale synthesis and transfer of graphene films. Nano Lett. 10(2), 490493 (2010).

C. Cochrane , M. Lewandowski , and V. Koncar : A flexible strain sensor based on a conductive polymer composite for in situ measurement of parachute canopy deformation. Sensors 10(9), 82918303 (2010).

C. Mattmann , F. Clemens , and G. Troster : Sensor for measuring strain in textile. Sensors 8(6), 37193732 (2008).

T.M. Hemmerling and N. Le : Brief review: Neuromuscular monitoring: An update for the clinician. Can. J. Anaesth. 54(1), 5872 (2007).

P. Bonato : Advances in wearable technology and applications in physical medicine and rehabilitation. J. Neuroeng. Rehabil. 2(1), 2 (2005).

H. Van Duinen , W.S. Yu , and S.C. Gandevia : Limited ability to extend the digits of the human hand independently with extensor digitorum. J. Physiol. 587(20), 47994810 (2009).

G. Abbruzzese , M. Morena , L. Spadavechia , and M. Schieppati : Response of arm flexor muscles to magnetic and electrical brain-stimulation during shortening and lengthening tasks in man. J. Physiol. 481(2), 499507 (1994).

J.J. Widrick and T. Barker : Peak power of muscles injured by lengthening contractions. Muscle Nerve 34(4), 470477 (2006).

S.C. Millasseau , R.P. Kelly , J.M. Ritter , and P.J. Chowienczyk : Determination of age-related increases in large artery stiffness by digital pulse contour analysis. Clin. Sci. 103(4), 371377 (2002).

K. Hirata , M. Kawakami , and M.F. O'Rourke : Pulse wave analysis and pulse wave velocity - a review of blood pressure interpretation 100 years after Korotkov. Circ. J. 70(10), 12311239 (2006).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 1
Total number of PDF views: 31 *
Loading metrics...

Abstract views

Total abstract views: 79 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th July 2017. This data will be updated every 24 hours.