Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T06:09:13.328Z Has data issue: false hasContentIssue false

Highly textured Pb(Zr0.3Ti0.7)O3 thin films on GaN/sapphire by metalorganic chemical vapor deposition

Published online by Cambridge University Press:  01 June 2006

S.K. Dey*
Affiliation:
Department of Chemical and Materials Engineering, & Electrical Engineering, Ira A. Fulton School of Engineering, Arizona State University, Tempe, Arizona 85287-6006
W. Cao
Affiliation:
Department of Chemical and Materials Engineering, & Electrical Engineering, Ira A. Fulton School of Engineering, Arizona State University, Tempe, Arizona 85287-6006
S. Bhaskar
Affiliation:
Department of Chemical and Materials Engineering, & Electrical Engineering, Ira A. Fulton School of Engineering, Arizona State University, Tempe, Arizona 85287-6006
J. Li
Affiliation:
Department of Chemical and Materials Engineering, & Electrical Engineering, Ira A. Fulton School of Engineering, Arizona State University, Tempe, Arizona 85287-6006
*
a) Address all correspondence to this author. e-mail: Sandwip.dey@asu.edu
Get access

Abstract

Highly (111) textured Pb(Zr0.3Ti0.7)O3 (PZT 30/70) films were deposited on (0001) GaN/sapphire substrates using liquid-source metalorganic chemical vapor deposition (MOCVD) technique at 520 °C and 80 nm/min. The crystallinity of as-deposited PZT films and the structure of PZT/GaN interface were evaluated by x-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM), respectively. Mitigated by geometric epitaxy and strain energy minimization, the orientation relationships of PZT on epi-GaN, determined using x-ray pole figure and selected area diffraction pattern, were as follows: out-of-plane alignment of [111] PZT//[0001] GaN, and orthogonal in-plane alignments of [112] PZT//[1100] GaN (zone axes) and [110] PZT//[1120] GaN. The nanochemistry of the PZT (150nm)/GaN interface, studied using analytical TEM, indicated a chemically sharp interface with interdiffusion limited to a region below 5 nm. The properties of as-deposited PZT on GaN by MOCVD are briefly compared with PZT by sol-gel processing, radio-frequency sputtering, and pulsed laser deposition.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Haertling, G.H.: Ferroelectric ceramics: History and technology. J. Am. Ceram. Soc. 82, 797 (1999).Google Scholar
2.Shaw, T.M., Trolier-McKinstry, S., McIntyre, P.C.: The properties of ferroelectric films at small dimensions. Ann. Rev. Mater. Sci. 30, 263 (2000).CrossRefGoogle Scholar
3.Muralt, P.: PZT thin films for microsensors and actuators: Where do we stand? IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 903 (2000).CrossRefGoogle ScholarPubMed
4.Scott, J.F., De Araujo, C.A. Paz, McMillan, L.D., Yoshimori, H., Watanabe, H., Mihara, T., Azuma, M., Ueda, T., Ueda, T., Ueda, D., Kano, G.: Ferroelectric thin films in integrated microelectronic devices. Ferroelectrics 133, 47 (1992).CrossRefGoogle Scholar
5.Dey, S.K.: Integrated Pb-perovskite dielectrics for science and technology. Ferroelectrics 135, 117 (1992).Google Scholar
6.Dey, S.K., Budd, K.D., Payne, D.A.: Thin-film ferroelectrics of PZT by sol-gel processing. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 35, 80 (1988).Google Scholar
7.Scott, J.F., De Araujo, C.A. Paz: Ferroelectric memories. Science 246, 1400 (1989).Google Scholar
8.Petuskey, W.T., Richardson, K., Dey, S.K.: Chemical aspects of Pb–Zr–Ti oxide thin film synthesis by PE-MOCVD below 500 °C. Integr. Ferroelectr. 2, 269 (1992).CrossRefGoogle Scholar
9.Clark, L.T., Dey, S.K., Grondin, R.O.: Ferroelectric thin-film memory for electrically programmable IC neural networks. Ferroelectrics 116, 205 (1991).Google Scholar
10.Arimoto, Y., Ishiwara, H.: Current status of ferroelectric randomm-access memory. MRS Bull. 29(11), 823 (2004).CrossRefGoogle Scholar
11.Muralt, P.: Piezoelectric thin films for MEMS. Integr. Ferroelectr. 17, 297 (1997).CrossRefGoogle Scholar
12.Polcawich, R.G., Scanlon, M., Pulskamp, J., Clarkson, J., Conrad, J., Washington, D., Piekarz, R., Trolier-McKinstry, S., Dubey, M.: Design and fabrication of a lead zirconate titanate (PZT) thin film acoustic sensor. Integr. Ferroelectr. 54, 595 (2003).CrossRefGoogle Scholar
13.Zinck, C., Pinceau, D., Defay, E., Delevoye, E., Barbier, D.B.: Development and characterization of membranes actuated by a PZT thin film for MEMS applications. Sens. Actuator A, Phys. 115, 483 (2004).Google Scholar
14.Polla, D.L., Francis, L.F.: Processing and characterization of piezoelectric materials and integration into microelectromechanical systems. Ann. Rev. Mater. Sci. 28, 563 (1998).CrossRefGoogle Scholar
15.Shorrocks, N.M., Patel, A., Walker, M.J., Parsons, A.D.: Integrated thin film PZT pyroelectric detector arrays. Microelectron. Eng. 29, 59 (1995).CrossRefGoogle Scholar
16.Chang, C.C., Tang, C.S.: An integrated pyroelectric infrared sensor with a PZT thin film. Sens. Actuator A, Phys. 65, 171 (1998).Google Scholar
17.Zhang, Q., Whatmore, R.W.: Sol-gel PZT and Mn-doped PZT thin films for pyroelectric applications. J. Phys. D: Appl. Phys. 34, 2296 (2001).Google Scholar
18.Ishida, M., Tsuji, S., Kimura, K., Matsunami, H., Tanaka, T.: Epitaxial-growth of ferroelectric PLZT [(Pb,La)(Zr,Ti)O3] thin-films. J. Cryst. Growth 45, 393 (1978).CrossRefGoogle Scholar
19.Dey, S.K., Zuleeg, R.: Processing and parameters of sol-gel PZT thin-films for GaAs memory applications. Ferroelectrics 112, 309 (1990).Google Scholar
20.Dey, S.K., Zuleeg, R.: Integrated sol-gel PZT thin-films on Pt, Si, and GaAs for nonvolatile memory applications. Ferroelectrics 108, 37 (1990).Google Scholar
21.Fork, D.K., Armani-Leplingard, F., Kingston, J.J.: Ferroelectric thin films for monolithic optical-devices. Integr. Ferroelectr. 7, 1 (1995).CrossRefGoogle Scholar
22.Masuda, A., Morita, S., Shigeno, H., Morimoto, A., Shimizu, T., Wu, J., Yaguchi, H., Onabe, K.: Fabrication of Pb(Zr,Ti)O3/MgO/CaN/GaAs structure for optoelectronic device applications. J. Cryst. Growth 189, 227 (1998).CrossRefGoogle Scholar
23.Fuflyigin, V., Osinsky, A., Wang, F., Vakhutinsky, P., Norris, P.: Growth of ferroelectric oxide films on n-GaN/c-sapphire structures. Appl. Phys. Lett. 76, 1612 (2000).Google Scholar
24.Ishiwara, H. Status of metal-ferroelectric-semiconductor field effect transistors (MFSFETs) and related devices, in Handbook of Thin Film Devices, Vol. 5, edited by Francombe, M.H. (Academic Press, San Diego, CA, 2000) p. 79.CrossRefGoogle Scholar
25.Li, W.P., Zhang, R., Zhou, Y.G., Yin, J., Bu, H.M., Luo, Z.Y., Shen, B., Shi, Y., Jiang, R.L., Gu, S.L., Liu, Z.G., Zheng, Y.D., Huang, Z.C.: Studies of metal-ferroelectric-GaN structures. Appl. Phys. Lett. 75, 2416 (1999).Google Scholar
26.Dey, S.K., Bhaskar, S., Goswami, J., Cao, W.: Structural and electrical properties of Pb(Zr,Ti)O3 thin films on GaN/sapphire, Ru/sapphire and Ru/GaN/sapphire substrates. Integr. Ferroelectr. 60, 69 (2004).Google Scholar
27.Gruverman, A., Cao, W., Bhaskar, S., Dey, S.K.: Investigation of Pb(Zr,Ti)O3/GaN heterostructures by scanning-probe microscopy. Appl. Phys. Lett. 84, 5153 (2004).CrossRefGoogle Scholar
28.Dey, S.K., Bhaskar, S., Tsai, M.H., Cao, W.: Pb(Zr,Ti)O3-GaN heterostructures for RF MEMS applications. Integr. Ferroelectr. 62, 69 (2004).Google Scholar
29.Cao, W., Bhaskar, S., Li, J., Dey, S.K.: Interfacial nanochemistry and electrical properties of Pb(Zr0.3Ti0.7)O3 films on GaN/sapphire. Thin Solid Films 484, 154 (2005).Google Scholar
30.Dey, S.K. In Ferroelectric Thin Films: Synthesis and Basic Properties, edited by Araujo, C.P.D., Scott, J.F., and Taylor, G.W. (Gordon and Breach, Amsterdam, The Netherlands, 1996) Chap. 9, p. 329.Google Scholar
31.Dey, S.K., Majhi, P., Shin, Y.W., Tang, D., Kirby, A., Zhao, J., Dornfest, C., Lou, L., Kher, S.: Sub-300 angstrom (Bax,Sr1−x)TiO3 films by metal organic chemical vapor deposition: Nanostructure, step coverage, and dielectric properties. Jpn. J. Appl. Phys. 40, 3354 (2001).Google Scholar
32.Aratani, M., Funakubo, H.: Characteristics of Pb(Zr,Ti)O3 thin films prepared on various substrates by source gas pulse-introduced metalorganic chemical vapor deposition. Ferroelectrics 260, 413 (2001).CrossRefGoogle Scholar
33.Byun, K.M., Lee, J.W.: Thermochemical stability of IrO2 bottom electrodes in direct-liquid-injection metalorganic chemical vapor deposition of Pb(Zr,Ti)O3 films. Jpn. J. Appl. Phys. 43, 2655 (2004).CrossRefGoogle Scholar
34.Foster, C.M., Csencsits, R., Bai, G.R., Li, Z., Wills, L.A., Hiskes, R., AlShareef, H.N., Dimos, D.: Structure and properties of heteroepitaxial Pb(Zr0.35Ti0.65)O3/SrRuO3 multilayer thin films on SrTiO3(100) prepared by MOCVD and RF sputtering. Integr. Ferroelectr. 10, 31 (1995).CrossRefGoogle Scholar
35.Asakura, T., Ishikawa, K., Sato, K., Okada, M.: Preparation and pyroelectric characteristics of Pb(Zr,Ti)O3 thin films grown by metalorganic chemical vapor deposition. Jpn. J. Appl. Phys. 35, 4886 (1996).Google Scholar
36.Zhou, J., Reddic, J.E., Sinha, M., Ricker, W.S., Karlinsey, J., Yang, J.W., Khan, M.A., Chen, D.A.: Surface morphologies of MOCVD-grown GaN films on sapphire studied by scanning tunneling microscopy. Appl. Surf. Sci. 202, 131 (2002).CrossRefGoogle Scholar
37.Dey, S.K., Wang, C.G., Cao, W., Bhaskar, S., Li, J., Subramanyam, G.: Voltage tunable epitaxial PbxSr(1−x)TiO3 films on sapphire by MOCVD: Nanostructure and microwave properties. J. Mater. Sci. 41, 77 (2006).Google Scholar
38.Wasa, K., Yamazaki, O., Adachi, H., Kawaguchi, T., Setsune, K.: Optical TIR switches using PLZT thin-film wave-guides on sapphire. J. Lightwave Technol. 2, 710 (1984).Google Scholar
39.Thompson, C.V.: Structure evolution during processing of polycrystalline films. Annu. Rev. Mater. Sci. 30, 159 (2000).Google Scholar
40.Okumura, H., Misawa, S., Yoshida, S.: Epitaxial-growth of cubic and hexagonal GaN on GaAs by gas-source molecular-beam epitaxy. Appl. Phys. Lett. 59, 1058 (1991).Google Scholar
41.Mahajan, S., Sreeharsha, K.S.: Principles of Growth and Processing of Semiconductors (WCB/McGraw-Hill, Boston, MA, 1999), p. 275.Google Scholar
42.Zheleva, T., Jagannadham, K., Narayan, J.: Epitaxial-growth in large-lattice-mismatch systems. J. Appl. Phys. 75, 860 (1994).CrossRefGoogle Scholar