Skip to main content

High-performance composite with negative Poisson’s ratio

  • Fernanda Steffens (a1), Fernando Ribeiro Oliveira (a1), Carlos Mota (a2) and Raul Fangueiro (a2)

This article presents innovative work undertaken to evaluate the auxetic composite materials developed using weft-knitted fabrics with negative Poisson’s ratio (NPR) produced from high-tenacity filaments of para-aramid (p-AR) and polyamide. The aim of this study is to develop polymeric composite materials reinforced with auxetic knitted fabrics and to evaluate the degree of transference of the auxetic behavior from the fibrous reinforcement to the composite produced. The results show that the NPR values remained in the composites. Regardless of the type of resin used, either epoxy or polyester, the highest values were obtained for samples produced with p-AR auxetic knitted fabrics. The NPR composites developed within this work present great potential for applications in industrial areas, including personal protection products, such as bulletproof vests, helmets, knee, and elbow protectors, and in all other areas where energy absorption is a key factor to be considered.

Corresponding author
a) Address all correspondence to this author. e-mail:
Hide All

Contributing Editor: Linda S. Schadler

Hide All
1. Padaki, N.V. and Alagirusamy, R.: Knitted preforms for composite applications. J. Ind. Text. 35, 4 (2006).
2. Ferreira, A., Ferreira, F., and Paiva, M.C.: Textile sensor applications with composite monofilaments of polymer/carbon nanotubes. Adv. Sci. Technol. 12, 65 (2012).
3. Oliveira, F.R., Fernandes, M., Carneiro, N., and Souto, A.P.: Functionalization of wool fabric with phase-change materials microcapsules after plasma surface modification. J. Appl. Polym. Sci. 128, 2638 (2013).
4. Araújo, M., Fangueiro, R., and Hong, H.: Modelling and simulation of the mechanical behaviour of weft-knitted fabrics for technical applications—Part I: General considerations and experimental analyses. Autex Res. J. 3, 111 (2003).
5. Pandita, S.D., Falconet, D., and Verpoest, I.: Impact properties of weft knitted fabric reinforced composites. Compos. Sci. Technol. 62, 1113 (2002).
6. Ramakrishna, S.: Characterization and modeling of the tensile properties of plain weft-knit fabric-reinforced composites. Compos. Sci. Technol. 57, 1 (1997).
7. Chan, E. and Evans, K.E.: Fabrication methods for auxetic foams. J. Mater. Sci. 32, 5945 (1997).
8. Alderson, A. and Alderson, K.L.: Auxetic materials. Proc. Inst. Mech. Eng., Part G 221, 565 (2007).
9. Alderson, A. and Alderson, K.: Expanding materials and applications: Exploiting auxetic textiles. TTI 29 (2005).
10. Ugbolue, S.C., Kim, Y.K., Warner, S.B., Fan, Q., Yang, C-L., Kyzymchuk, O., Feng, Y., and Lord, J.: Engineered warp knit auxetic fabrics. J. Text. Sci. Eng. 2, 1 (2012).
11. Evans, K.E. and Alderson, K.L.: Auxetic materials: The positive side of being negative. Eng. Sci. Educ. J. 148 (2000).
12. Alderson, K.L. and Ruth, S.V.: Auxetic materials. U.K. Patent No. US 6,878,320 B1, April 12, 2005.
13. Simkins, V.R., Alderson, A., Davies, P.J., and Alderson, K.L.: Single fibre pullout tests on auxetic polymeric fibres. J. Mater. Sci. 40, 4355 (2005).
14. Liu, Q.: Literature Review: Materials with Negative Poisson’s Ratios and Potential Applications to Aerospace and Defence; DSTO-GD-0472 (DSTO Defence Science and Technology Organisation, Victoria, Australia, 2006).
15. Scarpa, F.: Auxetic materials for bioprostheses. IEEE Signal Process. Mag. 128, 125 (2008).
16. Thill, C., Etches, J., Bond, I., Potter, K., and Weaver, P.: Morphing skins. Aeronaut. J. 112, 117 (2008).
17. Prawoto, Y.: Seeing auxetic materials from the mechanics point of view: A structural review on the negative Poisson’s ratio. Comput. Mater. Sci. 58, 140 (2012).
18. Wright, J.R., Burns, M.K., James, E., Sloan, M.R., and Evans, K.E.: On the design and characterisation of low-stiffness auxetic yarns and fabrics. Text. Res. J. 82, 645 (2012).
19. Silva, T.A.A., Panzera, T.H., Brandão, L.C., Lauro, C.H., Boba, K., and Scarpa, F.: Preliminary investigations on auxetic structures based on recycled rubber. Phys. Status Solidi B 249, 1353 (2012).
20. Pichandi, S., Rana, S., Oliveira, D., Fangueiro, R., and Xavier, J.: Development of novel auxetiic structures based on braided composites. Mater. Des. 61, 286 (2014).
21. Miller, W., Hook, P., Smith, C., Wanga, X., and Evans, K.: The manufacture and characterisation of a novel, low modulus, negative Poisson’s ratio composite. Compos. Sci. Technol. 69, 651 (2009).
22. Miller, W., Ren, Z., Smith, C., and Evans, K.: A negative Poisson’s ratio carbon fibre composite using a negative Poisson’s ratio yarn reinforcement. Compos. Sci. Technol. 72, 761 (2012).
23. Bhattacharya, S., Zhang, G.H., Ghita, O., and Evans, K.E.: The variation in Poisson’s ratio caused by interactions between core and wrap in helical composite auxetic yarns. Compos. Sci. Technol. 102, 87 (2014).
24. Zhang, G.H., Ghita, O., and Evans, K.E.: The fabrication and mechanical properties of a novel 3-component auxetic structure for composites. Compos. Sci. Technol. 117, 257 (2015).
25. ISO 2060. Determination of linear density (mass per unit length) by the skein method, 1994.
26. ISO 2062. Determination of single-end breaking force and elongation at break using constant rate of extension (CRE) tester, 2009.
27. ASTM Int. D7269/d7269M-11. Standard Test Methods for Tensile Testing of Aramid Yarns, 2011.
28. ASTM Int.-D 3217-01a. Standard Test Methods for Breaking Tenacity of Manufactured Textile Fibers in Loop or Knot Configurations, 2001.
29. Araújo, M., Fangueiro, R., and Hong, H.: Modelling and simulation of the mechanical behaviour of weft-knitted fabrics for technical applications—Part IV: 3D FEA model with a mesh of tetrahedric elements. Autex Res. J. 4, 2 (2004).
30. ISO 527-5. Plastics—Determination of tesile properties—Part 5: Test conditions for unidirectional fibre-reinforced plastic composites, 1997.
31. Hu, H., Wang, Z., and Liu, S.: Development of auxetic fabrics using flat knitting technology. Text. Res. J. 81, 1493 (2011).
32. Alderson, K., Alderson, A., Anand, S., Simkins, V., Nazare, S., and Ravirala, N.: Auxetic warp knit textile structures. Phys. Status Solidi B 249, 1322 (2012).
33. Steffens, F., Rana, S., and Fangueiro, R.: Development of novel auxetic textile structures using high performance fibres. Mater. Des. 106, 8189 (2016).
34. Lau, K.W. and Dias, T.: Knittability of high-modulus yarns. J. Text. Inst. 85, 173 (1994).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 8
Total number of PDF views: 91 *
Loading metrics...

Abstract views

Total abstract views: 413 *
Loading metrics...

* Views captured on Cambridge Core between 11th September 2017 - 20th March 2018. This data will be updated every 24 hours.