Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-28T07:17:32.678Z Has data issue: false hasContentIssue false

High-strength Cu–Zr binary alloy with an ultrafine eutectic microstructure

Published online by Cambridge University Press:  31 January 2011

Kyou-Hyun Kim
Affiliation:
Department of Materials Science and Engineering, Korea University, Seoul 136-701, Korea
Jae-Pyoung Ahn
Affiliation:
Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 136-791, Korea
Jae-Hoon Lee
Affiliation:
Light Material team, Korea Institute of Industrial Technology, Incheon, Korea
Jae-Chul Lee*
Affiliation:
Department of Materials Science and Engineering, Korea University, Seoul 136-701, Korea
*
a)Address all correspondence to this author. e-mail: jclee001@korea.ac.kr
Get access

Abstract

In this study, we synthesized Cu–Zr binary alloys reinforced with an ultrafine eutectic microstructure. The alloys consisted of alternating layers of a hard superlattice phase and a ductile Cu phase with a very fine interlamellar spacing of ∼60 nm. The superlattice phase enhanced the strength of the alloys while the laminated composite structure helped improve their plasticity, making their mechanical properties comparable to those of the earlier reported high strength alloys. This paper discusses the fundamental microstructural aspects that influence the mechanical properties of these alloys.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Wang, Y., Chen, M., Zhou, F.Ma, E.: High tensile ductility in a nanostructured metal. Nature 419, 912 2002CrossRefGoogle Scholar
2Lim, C.Y., Han, S.Z.Lee, S.H.: Formation of nano-sized grains in Cu and Cu–Fe–P alloys by accumulative roll bonding process. Met. Mater. Int. 12, 225 2006CrossRefGoogle Scholar
3Greer, A.L.: Metallic glasses. Science 267, 1947 1995CrossRefGoogle ScholarPubMed
4Takeyama, M.Liu, C.T.: Effect of grain size on yield strength of Ni3Al and other alloys. J. Mater. Res. 3, 665 1988Google Scholar
5Ohmura, T., Tsuzaki, K., Tsuji, N.Kamikawa, N.: Matrix strength evaluation of ultra-fine grained steel by nanoindentation. J. Mater. Res. 19, 347 2004CrossRefGoogle Scholar
6Trelewicza, J.R.Schuh, C.A.: The Hall–Petch breakdown in nanocrystalline metals: A crossover to glass-like deformation. Acta Mater. 55, 5948 2007CrossRefGoogle Scholar
7Lee, C.M., Chae, S.W., Kim, H-J.Lee, J.C.: Role of nanocrystals on the plasticity of amorphous alloy. Met. Mater. Int. 13, 191 2007CrossRefGoogle Scholar
8Li, H.Q., Li, L., Fan, C., Choo, H.Liaw, P.K.: Nanocrystalline coating enhanced ductility in a Zr-based bulk metallic glass. J. Mater. Res. 22, 508 2007Google Scholar
9Kim, K.H., Kim, H.J.Lee, J-C.: Effect of a minor element with a large mixing enthalpy difference on the plasticity of amorphous alloys. J. Mater. Res. 22, 2558 2007Google Scholar
10Knipling, K.E., Dunand, D.C.Seidman, D.N.: Precipitation evolution in Al–Zr and Al–Zr–Ti alloys during isothermal aging at 375–425 °C. Acta Mater. 56, 114 2008CrossRefGoogle Scholar
11Li, Z.G., Hui, X., Zhang, C.M., Wang, M.L.Chen, G.L.: Strengthening and toughening of Mg–Cu–(Y, Gd) bulk metallic glasses by minor addition of Be. Mater. Lett. 61, 5018 2007Google Scholar
12Li, Z.Peng, L.M.: Microstructural and mechanical characterization of Nb-based in situ composites from Nb–Si–Ti ternary system. Acta Mater. 55, 6573 2007CrossRefGoogle Scholar
13Zhou, L., Liu, G., Han, Z.Lu, K.: Grain size effect on wear resistance of a nanostructured AISI52100 steel. Scripta Mater. 58, 445 2007CrossRefGoogle Scholar
14Lee, J.C., Kim, Y.C., Ahn, J.P., Kim, H.S., Lee, S.H.Lee, B.J.: Deformation-induced nanocrystallization and its influence on work hardening in a bulk amorphous matrix composite. Acta Mater. 52, 1525 2004Google Scholar
15He, G., Eckert, J., Loser, W.Schultz, L.: Novel Ti-base nanostructure–dendrite composite with enhanced plasticity. Nat. Mater. 2, 33 2003Google Scholar
16Hays, C.C., Kim, C.P.Johnson, W.L.: Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901 2000Google Scholar
17Eckert, J., Das, J., He, G., Calin, M.Kim, K.B.: Ti-base bulk nanostructure-dendrite composites: Microstructure and deformation. Mater. Sci. Eng., A 449, 24 2007Google Scholar
18Eckert, J., Kuhn, U., Das, J., Scudino, S.Radtke, N.: Nanostructured composite materials with improved deformation behavior. Adv. Eng. Mater. 7, 587 2005Google Scholar
19Louzguine-Luzgin, D.V., Louzguina-Luzgina, L.V., Kato, H.Inoue, A.: Investigation of high strength metastable hypereutectic ternary Ti–Fe–Co and quaternary Ti–Fe–Co–(V, Sn) alloys. J. Alloys Compd. 434, 32 2007Google Scholar
20Das, J., Kim, K.B., Baier, F., Loser, W., Gebert, A.Eckert, J.: Bulk ultra-fine eutectic structure in Ti–Fe-base alloys. J. Alloys Compd. 434, 28 2007Google Scholar
21Louzguine, D.V., Kato, H.Inoue, A.: High strength and ductile binary Ti–Fe composite alloy. J. Alloys Compd. 384, L1 2004CrossRefGoogle Scholar
22Lee, S.J., Lee, S.W., Kim, K.H., Hahn, J.H.Lee, J.C.: A high strength Cu-based alloy containing superlattice structures. Scr. Mater. 56, 457 2007Google Scholar
23He, X.C., Wang, H., Liu, H.S.Jin, Z.P.: Thermodynamic description of the Cu–Ag–Zr system. Calphad 30, 367 2006Google Scholar
24Inoue, A.: Stabilization and high strain-rate superplasticity of metallic supercooled liquid. Mater. Sci. Eng., A 267, 171 1999Google Scholar
25Thompson-Russell, K.C.Edington, J.W.: Electron Microscope Specimen Preparation Techniques in Materials Science N.V. Philips Gloeilampenfabrieken Eindhoven 1977 37CrossRefGoogle Scholar
26Zhang, L.C., Das, J., Lu, H.B., Duhamel, C., Calin, M.Eckert, J.: High strength Ti–Fe–Sn ultrafine composites with large plasticity. Scripta Mater. 57, 101 2007CrossRefGoogle Scholar
27Williams, D.B.Carter, C.B.: Transmission Electron Microscopy: A Textbook for Materials Science Plenum Press New York 1996 478Google Scholar
28Lee, B.J., Shim, J.H.Baskes, M.I.: Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method. Phys. Rev. B: Condens. Matter 68, 144112 2003CrossRefGoogle Scholar
29Kim, Y.M., Lee, B.J.Baskes, M.I.: Modified embedded-atom method interatomic potentials for Ti and Zr. Phys. Rev. B: Condens. Matter 74, 014101 2006CrossRefGoogle Scholar
30Eckert, J., Das, J., Kim, K.B., Baier, F., Tang, M.B., Wang, W.H.Zhang, Z.F.: High strength ductile Cu-base metallic glass. Intermetallics 14, 876 2006Google Scholar
31Kim, K.H., Lee, S.W., Ahn, J.P., Fleury, E., Kim, Y.C.Lee, J.C.: A Cu-based amorphous alloy with a simultaneous improvement in glass forming ability and plasticity. Met. Mater. Int. 13, 21 2007Google Scholar
32Park, E.S.Kim, D.H.: Phase separation and enhancement of plasticity in Cu–Zr–Al–Y bulk metallic glasses. Acta Mater. 54, 2597 2006CrossRefGoogle Scholar
33He, G., Loser, W.Eckert, J.: In situ formed Ti–Cu–Ni–Sn–Ta nanostructure–dendrite composite with large plasticity. Acta Mater. 51, 5223 2003Google Scholar