Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-05T16:36:21.778Z Has data issue: false hasContentIssue false

High-temperature stable single carrier hole only device based on conjugated polymers

Published online by Cambridge University Press:  13 July 2018

Shahidul Alam*
Affiliation:
Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Jena 07743, Germany; and Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena 07743, Germany
Peter Fischer
Affiliation:
Institute of Materials Engineering, Technische Universität Ilmenau, Ilmenau 98693, Germany
Christian Kästner
Affiliation:
Institute of Thermodynamics and Fluid Mechanics, Technische Universität Ilmenau, Ilmenau 98693, Germany
Chetan R. Singh
Affiliation:
Department of Macromolecular Chemistry I, University of Bayreuth, Bayreuth D-95440, Germany
Ulrich S. Schubert
Affiliation:
Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Jena 07743, Germany; and Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena 07743, Germany
Harald Hoppe*
Affiliation:
Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Jena 07743, Germany; and Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena 07743, Germany
*
a)Address all correspondence to these authors. e-mail: shahidul.alam@uni-jena.de
Get access

Abstract

Thin hole transport layers are important elements in organic semiconductor-based devices. Metal oxides are an encouraging material class for this purpose, as they may provide sufficient hole conduction in combination with excellent electron blocking properties. Both, long-term device stability, which may often be limited by the thermal stability of interfaces, and higher temperature processing steps, benefit strongly from the existence of thermally stable metal oxide interlayers. Provided that thermally stable electrodes can be fashioned, the stability of organic active layers—for example, in organic field effect transistors, light emitting diodes, or photovoltaic (OPV) devices can be investigated. Here, we apply this concept and report about the study of hole mobility (µh) in single-carrier-hole-only devices in dependence of thermal annealing up to the above the actual melting temperature of regio-regular poly(3-hexylthiophene-2,5-diyl) (P3HT).

Type
Invited Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Friederich, P., Meded, V., Poschlad, A., Neumann, T., Rodin, V., Stehr, V., Symalla, F., Danilov, D., Ludemann, G., Fink, R.F., Kondov, I., von Wrochem, F., and Wenzel, W.: Molecular origin of the charge carrier mobility in small molecule organic semiconductors. Adv. Funct. Mater. 26, 5757 (2016).Google Scholar
Yao, Y.F., Dong, H.L., and Hu, W.P.: Charge transport in organic and polymeric semiconductors for flexible and stretchable devices. Adv. Mater. 28, 4513 (2016).Google Scholar
Bassler, H. and Kohler, A.: Charge transport in organic semiconductors. In Unimolecular and Supramolecular Electronics I: Chemistry and Physics Meet at Metal-Molecule Interfaces, Metzger, R.M., ed. (Springer-Verlag Berlin, Berlin, 2012); p. 1.Google Scholar
Nguyen, L.H., Hoppe, H., Erb, T., Günes, S., Gobsch, G., and Sariciftci, N.S.: Effects of annealing on the nanomorphology and performance of poly(alkylthiophene): Fullerene bulk-heterojunction solar cells. Adv. Funct. Mater. 17, 1071 (2007).Google Scholar
Zhokhavets, U., Erb, T., Hoppe, H., Gobsch, G., and Serdar Sariciftci, N.: Effect of annealing of poly(3-hexylthiophene)/fullerene bulk heterojunction composites on structural and optical properties. Thin Solid Films 496, 679 (2006).Google Scholar
Zhokhavets, U., Gobsch, G., Hoppe, H., and Sariciftci, N.S.: Anisotropic optical properties of thin poly(3-octylthiophene)-films as a function of preparation conditions. Synth. Met. 143, 113 (2004).Google Scholar
Zhokhavets, U., Gobsch, G., Hoppe, H., and Sariciftci, N.S.: A systematic study of the anisotropic optical properties of thin poly(3-octylthiophene)-films in dependence on growth parameters. Thin Solid Films 451–452, 69 (2004).Google Scholar
Tanase, C., Meijer, E.J., Blom, P.W., and De Leeuw, D.M.: Unification of the hole transport in polymeric field-effect transistors and light-emitting diodes. Phys. Rev. Lett. 91, 216601 (2003).Google Scholar
Crossland, E.J.W., Tremel, K., Fischer, F., Rahimi, K., Reiter, G., Steiner, U., and Ludwigs, S.: Anisotropic charge transport in spherulitic poly(3-hexylthiophene) films. Adv. Mater. 24, 839 (2012).Google Scholar
Mozer, A.J., Sariciftci, N.S., Pivrikas, A., Österbacka, R., Juška, G., Brassat, L., and Bässler, H.: Charge carrier mobility in regioregular poly(3-hexylthiophene) probed by transient conductivity techniques: A comparative study. Phys. Rev. B 71, 035214 (2005).CrossRefGoogle Scholar
Gebeyehu, D., Maennig, B., Drechsel, J., Leo, K., and Pfeiffer, M.: Bulk-heterojunction photovoltaic devices based on donor–acceptor organic small molecule blends. Sol. Energy Mater. Sol. Cells 79, 81 (2003).CrossRefGoogle Scholar
Kastner, C., Xuechen, J., Egbe, D.A.M., Ade, H., and Hoppe, H.: Correlating domain purity with charge carrier mobility in bulk heterojunction polymer solar cells. Proc. SPIE 9184, 91840Z (2014).Google Scholar
Diacon, A., Derue, L., Lecourtier, C., Dautel, O., Wantz, G., and Hudhomme, P.: Cross-linkable azido C60-fullerene derivatives for efficient thermal stabilization of polymer bulkheterojunction solar cells. J. Mater. Chem. C 2, 7163 (2014).Google Scholar
Harnonnet, J., Nakano, M., Nakano, K., Sugino, H., Takimiya, K., and Tajima, K.: Bis(naphthothiophene diimide)indacenodithiophenes as acceptors for organic photovoltaics. Chem. Mater. 29, 9618 (2017).Google Scholar
Singh, C.R., Gupta, G., Lohwasser, R., Engmann, S., Balko, J., Thelakkat, M., Thurn-Albrecht, T., and Hoppe, H.: Correlation of charge transport with structural order in highly ordered melt-crystallized poly(3-hexylthiophene) thin films. J. Polym. Sci., Part B: Polym. Phys. 51, 943 (2013).Google Scholar
Boulanger, N., Yu, J.C., and Barbero, D.R.: SWNT nano-engineered networks strongly increase charge transport in P3HT. Nanoscale 6, 11633 (2014).CrossRefGoogle ScholarPubMed
Boulanger, N., Yu, V., Hilke, M., Toney, M.F., and Barbero, D.R.: In situ probing of the crystallization kinetics of rr-P3HT on single layer graphene as a function of temperature. Phys. Chem. Chem. Phys. 19, 8496 (2017).Google Scholar
Kan, Z.P., Colella, L., Canesi, E.V., Vorobiev, A., Skrypnychuk, V., Terraneo, G., Barbero, D.R., Bertarelli, C., MacKenzie, R.C.I., and Keivanidis, P.E.: Charge transport control via polymer polymorph modulation in ternary organic photovoltaic composites. J. Mater. Chem. A 4, 1195 (2016).Google Scholar
Skrypnychuk, V., Boulanger, N., Yu, V., Hilke, M., Mannsfeld, S.C.B., Toney, M.F., and Barbero, D.R.: Enhanced vertical charge transport in a semiconducting P3HT thin film on single layer graphene. Adv. Funct. Mater. 25, 664 (2015).CrossRefGoogle Scholar
Skrypnychuk, V., Boulanger, N., Yu, V., Hilke, M., Toney, M.F., and Barbero, D.R.: Reduced crystallinity and enhanced charge transport by melt annealing of an organic semiconductor on single layer graphene. J. Mater. Chem. C 4, 4143 (2016).CrossRefGoogle Scholar
Synooka, O., Kretschmer, F., Hager, M.D., Himmerlich, M., Krischok, S., Gehrig, D., Laquai, F., Schubert, U.S., Gobsch, G., and Hoppe, H.: Modification of the active layer/PEDOT:PSS interface by solvent additives resulting in improvement of the performance of organic solar cells. ACS Appl. Mater. Interfaces 6, 11068 (2014).Google Scholar
Guo, Y.Z. and Robertson, J.: Origin of the high work function and high conductivity of MoO3. Appl. Phys. Lett. 105, 222110 (2014).CrossRefGoogle Scholar
Murgatroyd, P.: Theory of space-charge-limited current enhanced by Frenkel effect. J. Phys. D: Appl. Phys. 3, 151 (1970).CrossRefGoogle Scholar
Herrmann, F., Muhsin, B., Singh, C.R., Shokhovets, S., Gobsch, G., Hoppe, H., and Presselt, M.: Influence of interface doping on charge-carrier mobilities and sub-band gap absorption in organic solar cells. J. Phys. Chem. C 119, 9036 (2015).Google Scholar
Dacuña, A.S.J.: Modeling space-charge limited currents in organic semiconductors: Extracting trap density and mobility. Phys. Rev. B 84, 195209.Google Scholar
Ro, H.W., Akgun, B., O’Connor, B.T., Hammond, M., Kline, R.J., Snyder, C.R., Satija, S.K., Ayzner, A.L., Toney, M.F., Soles, C.L., and DeLongchamp, D.M.: Poly(3-hexylthiophene) and [6,6]-phenyl-C61-butyric acid methyl ester mixing in organic solar cells. Macromolecules 45, 6587 (2012).CrossRefGoogle Scholar
Skrypnychuk, V., Wetzelaer, G., Gordiichuk, P.I., Mannsfeld, S.C.B., Herrmann, A., Toney, M.F., and Barbero, D.R.: Ultrahigh mobility in an organic semiconductor by vertical chain alignment. Adv. Mater. 28, 2359 (2016).Google Scholar
Wang, G., Swensen, J., Moses, D., and Heeger, A.J.: Increased mobility from regioregular poly(3-hexylthiophene) field-effect transistors. J. Appl. Phys. 93, 6137 (2003).Google Scholar
Baeg, K.J., Khim, D., Kim, D.Y., Koo, J.B., You, I.K., Choi, W.S., and Noh, Y.Y.: High mobility top-gated poly(3-hexylthiophene) field-effect transistors with high work-function Pt electrodes. Thin Solid Films 518, 4024 (2010).CrossRefGoogle Scholar
Cunningham, P.D. and Hayden, L.M.: Carrier dynamics resulting from above and below gap excitation of P3HT and P3HT/PCBM investigated by optical-pump terahertz-probe spectroscopy. J. Phys. Chem. C 112, 7928 (2008).Google Scholar
Northrup, J.E.: Atomic and electronic structure of polymer organic semiconductors: P3HT, PQT, and PBTTT. Phys. Rev. B 76, 245202 (2007).Google Scholar
Kline, R.J., McGehee, M.D., Kadnikova, E.N., Liu, J.S., Frechet, J.M.J., and Toney, M.F.: Dependence of regioregular poly(3-hexylthiophene) film morphology and field-effect mobility on molecular weight. Macromolecules 38, 3312 (2005).Google Scholar
Noriega, R., Rivnay, J., Vandewal, K., Koch, F.P.V., Stingelin, N., Smith, P., Toney, M.F., and Salleo, A.: A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat. Mater. 12, 1038 (2013).Google Scholar
Balko, J., Portale, G., Lohwasser, R.H., Thelakkat, M., and Thurn-Albrecht, T.: Surface induced orientation and vertically layered morphology in thin films of poly(3-hexylthiophene) crystallized from the melt. J. Mater. Res. 32, 1957 (2017).Google Scholar
Nau, S., Schulte, N., Winkler, S., Frisch, J., Vollmer, A., Koch, N., Sax, S., and List, E.J.: Highly efficient color-stable deep-blue multilayer PLEDs: Preventing PEDOT:PSS-induced interface degradation. Adv. Mater. 25, 4420 (2013).Google Scholar
Irfan, I., James Turinske, A., Bao, Z., and Gao, Y.: Work function recovery of air exposed molybdenum oxide thin films. Appl. Phys. Lett. 101, 093305 (2012).CrossRefGoogle Scholar
Schulz, P., Tiepelt, J.O., Christians, J.A., Levine, I., Edri, E., Sanehira, E.M., Hodes, G., Cahen, D., and Kahn, A.: High-work-function molybdenum oxide hole extraction contacts in hybrid organic–inorganic perovskite solar cells. ACS Appl. Mater. Interfaces 8, 31491 (2016).Google Scholar