Skip to main content

Hyperpolarized 129Xe nuclear magnetic resonance study of mesoporous silicon sponge materials

  • Yougang Mao (a1), Dokyoung Kim (a2), Jinmyoung Joo (a3), Michael J. Sailor (a4), Russell Hopson (a1) and Li-Qiong Wang (a1)...

Mesoporous silicon sponge (MSS) is considered as a promising anode material for lithium ion batteries because of its preformed meso/macro porous structures that can accommodate large volume expansion during the lithiation process and its superior electrochemical performance. Temperature dependent hyperpolarized (HP) 129Xe NMR was applied to characterize the structure and porosity of MSS materials with varying pores and particle sizes. Our results reveal irregular pore structures with the presence of micropores inside the larger meso/macropore channels and each MSS material has its own characteristic pore environment with a varying degree of nonuniformity and connectivity of pores. This study demonstrates that HP 129Xe NMR is a potentially useful tool for providing a fingerprint of the structure and connectivity of the pores for each material, complementary to other characterization techniques.

Corresponding author
a) Address all correspondence to this author. e-mail:
Hide All

These authors contributed equally.

Contributing Editor: Paolo Colombo

Hide All
1. Armand, M. and Tarascon, J-M.: Building better batteries. Nature 451, 652657 (2008).
2. Whittingham, M.S.: Materials challenges facing electrical energy storage. MRS Bull. 33, 411419 (2008).
3. Smith, A.J., Burns, J.C., Zhao, X., Xiong, D., and Dahn, J.R.: A high precision coulometry study of the SEI growth in Li/graphite cells. J. Electrochem. Soc. 158, A447A452 (2011).
4. Oumellal, Y., Delpuech, N., Mazouzi, D., Dupré, N., Gaubicher, J., Moreau, P., Soudan, P., Lestriez, B., and Guyomard, D.: The failure mechanism of nano-sized Si-based negative electrodes for lithium ion batteries. J. Mater. Chem. 21, 62016208 (2011).
5. Holzapfel, M., Buqa, H., Krumeich, F., Petrat, F-M., and Veit, C.: Chemical vapor deposited silicon/graphite compound material as negative electrode for lithium-ion batteries. Electrochem. Solid-State Lett. 8, A516A520 (2005).
6. Obrovac, M.N. and Krause, L.J.: Reversible cycling of crystalline silicon powder. J. Electrochem. Soc. 154, A103A108 (2007).
7. Park, O.K., Cho, Y., Lee, S., Yoo, H-C., Song, H-K., and Cho, J.: Who will drive electric vehicles, olivine or spinel? Energy Environ. Sci. 4, 16211633 (2011).
8. Smith, A.J., Dahn, H.M., Burns, J.C., and Dahn, J.R.: Long-term low-rate cycling of LiCoO2/graphite Li-ion cells at 55 °C. J. Electrochem. Soc. 159, A705A710 (2012).
9. Kasavajjula, U., Wang, C., and Appleby, A.J.: Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources 163, 10031039 (2007).
10. Zhang, W-J.: A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources 196, 1324 (2011).
11. Liu, X.H., Zhong, L., Huang, S., Mao, S.X., Zhu, T., and Huang, J.Y.: Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6, 15221531 (2012).
12. McDowell, M.T., Ryu, I., Lee, S.W., Wang, C., Nix, W.D., and Cui, Y.: Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy. Adv. Mater. 24, 60346041 (2012).
13. Gu, M., Li, Y., Li, X., Hu, S., Zhang, X., Xu, W., Thevuthasan, S., Baer, D.R., Zhang, J-G., Liu, J., and Wang, C.: In Situ TEM study of lithiation behavior of silicon nanoparticles attached to and embedded in a carbon matrix. ACS Nano 6, 84398447 (2012).
14. Li, X., Gu, M., Hu, S., Kennard, R., Yan, P., Chen, X., Wang, C., Sailor, M.J., Zhang, J-G., and Liu, J.: Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nat. Commun. 5, 4105 (2014).
15. Moudrakovski, I.L., Terskikh, V.V., Ratcliffe, C.I., Ripmeester, J.A., Wang, L-Q., Shin, Y., and Exarhos, G.J.: A 129Xe NMR study of functionalized ordered mesoporous silica. J. Phys. Chem. B 106, 59385946 (2002).
16. Ripmeester, J.A.: Nuclear shielding of trapped xenon obtained by proton-enhanced, magic-angle spinning xenon-129 NMR spectroscopy. J. Am. Chem. Soc. 104, 289290 (1982).
17. Ito, T. and Fraissard, J.: 129Xe NMR study of xenon adsorbed on Y zeolites. J. Chem. Phys. 76, 52255229 (1982).
18. Ratcliffe, C.I.: Xenon NMR. Annu. Rep. NMR Spectrosc. 36, 123221 (1998).
19. Grover, B.C.: Noble-gas NMR detection through noble-gas-rubidium hyperfine contact interaction. Phys. Rev. Lett. 40, 391 (1978).
20. Happer, W., Miron, E., Schaefer, S., Schreiber, D., van Wingaarden, W.A., and Zeng, X.: Polarization of the nuclear spins of noble-gas atoms by spin exchange with optically pumped alkali-metal atoms. Phys. Rev. A 29, 30923110 (1984).
21. Driehuys, B., Cates, G.D., Miron, E., Sauer, K., Walter, D.K., and Happer, W.: High-volume production of laser-polarized 129Xe. Appl. Phys. Lett. 69, 16681670 (1996).
22. Ruset, I.C., Ketel, S., and Hersman, F.W.: Optical pumping system design for large production of hyperpolarized 129Xe. Phys. Rev. Lett. 96, 053002 (2006).
23. Moudrakovski, I.L., Nossov, A., Lang, S., Breeze, S.R., Ratcliffe, C.I., Simard, B., Santyr, G., and Ripmeester, J.A.: Continuous flow NMR with hyperpolarized xenon for the characterization of materials and processes. Chem. Mater. 12, 11811183 (2000).
24. Moudrakovski, I.L., Wang, L-Q., Baumann, T., Satcher, J.H. Jr., Exarhos, G.J., Ratcliffe, C.I., and Ripmeester, J.A.: Probing the geometry and interconnectivity of pores in organic aerogels using hyperpolarized 129Xe NMR spectroscopy. J. Am. Chem. Soc. 126, 50525053 (2004).
25. Knagge, K., Smith, J.R., Smith, L.J., Buriak, J., and Raftery, D.: Analysis of porosity in porous silicon using hyperpolarized 129Xe two-dimensional exchange experiments. Solid State Nucl. Magn. Reson. 29, 8589 (2006).
26. Terskikh, V.V., Moudrakovski, I.L., and Mastikhin, V.M.: 129Xe nuclear magnetic resonance studies of the porous structure of silica gels. J. Chem. Soc., Faraday Trans. 89, 42394243 (1993).
27. Ripmeester, J.A. and Ratcliffe, C.I.: On the application of 129Xe NMR to the study of microporous solids. J. Phys. Chem. 94, 76527656 (1990).
28. Terskikh, V.V., Moudrakovski, I.L., Breeze, S.R., Lang, S., Ratcliffe, C.I., Ripmeester, J.A., and Sayari, A.: A general correlation for the 129Xe NMR chemical shift-pore size relationship in porous silica-based materials. Langmuir 18, 56535656 (2002).
29. Wang, L-Q., Wang, D., Liu, L., Exarhos, G.J., Pawsey, S., and Moudrakovski, I.: Probing porosity and pore interconnectivity in crystalline mesoporous TiO2 using hyperpolarized 129Xe NMR. J. Phys. Chem. C 113, 65776583 (2009).
30. Canham, L.T.: Characterization challenges with porous silicon. In Handbook of Porous Silicon, Canham, L.T., ed. (Springer, Switzerland, 2014); p. 405.
31. Loni, A.: Gas adsorption analysis of porous silicon. In Handbook of Porous Silicon, Canham, L.T., ed. (Springer, Switzerland, 2014); p. 405.
32. Sailor, M.J.: Porous Silicon in Practice: Preparation, Characterization, and Applications (Wiley-VCH, Weinheim, Germany, 2012); p. 249.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary materials

Mao supplementary material
Figures S1-S4 and Tables S1-S5

 Word (2.3 MB)
2.3 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed