Skip to main content Accessibility help

Ice-templating, freeze casting: Beyond materials processing

  • Sylvain Deville (a1)


Ice templating is able to do much more than macroporous, cellular materials. The underlying phenomenon—the freezing of colloids—is ubiquitous, at a unique intersection of a variety of fields and domains, from materials science to physics, chemistry, biology, food engineering, and mathematics. In this review, I walk through the seemingly divergent domains in which the occurrence of freezing colloids can benefit from the work on ice templating, or which may provide additional understanding or inspiration for further development in materials science. This review does not intend to be extensive, but rather to illustrate the richness of this phenomenon and the obvious benefits of a pluridisciplinary approach for us as materials scientists, and for other scientists working in areas well outside the realms of materials science.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Deville, S.: Freeze-casting of porous ceramics: A review of current achievements and issues. Adv. Eng. Mater. 10, 155169 (2008).
2.Lottermoser, A.: Über das Ausfrieren von Hydrosolen. Berichte der deutschen chemischen. Gesellschaft 41, 39763979 (1908).
3.Mahler, W. and Bechtold, M.F.: Freeze-formed silica fibres. Nature 285, 2728 (1980).
4.Tong, H., Noda, I., and Gryte, C.C.: Formation of anisotropic ice-agar composites by directional freezing. Colloid Polym. Sci. 262, 589595 (1984).
5.Fukasawa, T., Ando, M., Ohji, T., and Kanzaki, S.: Synthesis of porous ceramics with complex pore structure by freeze-dry processing. J. Am. Ceram. Soc. 84, 230232 (2001).
6.Bartels-Rausch, T., Bergeron, V., Cartwright, J.H.E., Escribano, R., Finney, J.L., Grothe, H., Gutiérrez, P.J., Haapala, J., Kuhs, W.F., Pettersson, J.B.C., Price, S.D., Sainz-Díaz, C.I., Stokes, D.J., Strazzulla, G., Thomson, E.S., Trinks, H., and Uras-Aytemiz, N.: Ice structures, patterns, and processes: A view across the ice-fields. Rev. Modern Phys. 84, 885944 (2012).
7.Gutiérrez, M.C., Ferrer, M.L., and del Monte, F.: Ice-templated materials: Sophisticated structures exhibiting enhanced functionalities obtained after unidirectional freezing and ice-segregation-induced self-assembly. Chem. Mater. 20, 634648 (2008).
8.Deville, S.: Freeze-casting of porous biomaterials: Structure, properties and opportunities. Materials 3, 19131927 (2010).
9.Wegst, U.G.K., Schecter, M., Donius, A.E., and Hunger, P.M.: Biomaterials by freeze casting. Philos. Trans. R. Soc. London, Ser. A 368, 20992121 (2010).
10.Li, W.L., Lu, K., and Walz, J.Y.: Freeze casting of porous materials: Review of critical factors in microstructure evolution. Inter. Mater. Rev. 57, 3760 (2012).
11.Deville, S., Saiz, E., and Tomsia, A.P.: Ice-templated porous alumina structures. Acta Mater. 55, 19651974 (2007).
12.Araki, K. and Halloran, J.W.: New freeze-casting technique for ceramics with sublimable vehicles. J. Am. Ceram. Soc. 87, 18591863 (2004).
13.Macchetta, A., Turner, I.G., and Bowen, C.R.: Fabrication of HA/TCP scaffolds with a graded and porous structure using a camphene-based freeze-casting method. Acta Biomater. 5, 13191327 (2009).
14.Gutiérrez, M.C., Ferrer, M.L., Mateo, C.R., and del Monte, F.: Freeze-drying of aqueous solutions of deep eutectic solvents: A suitable approach to deep eutectic suspensions of self-assembled structures. Langmuir 25, 55095515 (2009).
15.Wu, X., Liu, Y., Li, X., Wen, P., Zhang, Y., Long, Y., Wang, X., Guo, Y., Xing, F., and Gao, J.: Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method. Acta Biomater. 6, 11671177 (2010).
16.Soltmann, U.: Freeze gelation: A new option for the production of biological ceramic composites (biocers). Mater. Lett. 57, 28612865 (2003).
17.Yue, J., Dong, B., and Wang, H.: Porous Si3N4 fabricated by phase separation method using benzoic acid as pore-forming agent. J. Am. Ceram. Soc. 94, 19891991 (2011).
18.Estevez, L., Kelarakis, A., Gong, Q., Da’as, E.H., and Giannelis, E.P.: Multifunctional graphene/platinum/nafion hybrids via ice templating. J. Am. Chem. Soc. 133, 61226125 (2011).
19.Zhang, X., Li, C., and Luo, Y.: Aligned/unaligned conducting polymer cryogels with three-dimensional macroporous architectures from ice-segregation-induced self-assembly of PEDOT-PSS. Langmuir 27, 19151923 (2011).
20.He, Z., Liu, J., Qiao, Y., Li, C.M., and Tan, T.T.Y.: Architecture engineering of hierarchically porous chitosan/vacuum-stripped graphene scaffold as bioanode for high performance microbial fuel cell. Nano Lett. 12, 47384741 (2012).
21.Hamamoto, K., Fukushima, M., Mamiya, M., Yoshizawa, Y., Akimoto, J., Suzuki, T., and Fujishiro, Y.: Morphology control and electrochemical properties of LiFePO4/C composite cathode for lithium ion batteries. Solid State Ionics 225, 560563 (2012).
22.Kao, J.C.T. and Golovin, A.A.: Particle capture in binary solidification. J. Fluid Mech. 625, 299 (2009).
23.Asthana, R. and Tewari, S.N.: Review the engulfment of foreign particles by a freezing interface. J. Mater. Sci. 28, 54145425 (1993).
24.Rempel, A.W. and Worster, M.G.: The interaction between a particle and an advancing solidification front. J. Crystal Growth 205, 427440 (1999).
25.Lipp, G. and Körber, C.: On the engulfment of spherical particles by a moving ice — liquid interface. J. Crystal Growth 130, 475489 (1993).
26.Lipp, G., Körber, C., and Rau, G.: Critical growth rates of advancing ice-water interfaces for particle encapsulation. J. Crystal Growth 99, 206210 (1990).
27.Park, M.S., Golovin, A.A., and Davis, S.H.: The encapsulation of particles and bubbles by an advancing solidification front. J. Fluid Mech. 560, 415 (2006).
28.Kim, J-W., Tazumi, K., Okaji, R., and Ohshima, M.: Honeycomb monolith-structured silica with highly ordered, three-dimensionally interconnected macroporous walls. Chem. Mater. 21, 34763478 (2009).
29.Zhang, H., Long, J., and Cooper, A.I.: Aligned porous materials by directional freezing of solutions in liquid CO2. J. Am. Chem. Soc. 127, 1348213483 (2005).
30.Maki, T. and Sakka, S.: Formation of alumina fibers by unidirectional freezing of gel. J. Non-Cryst. Solids 82, 239245 (1986).
31.Mukai, S.R., Nishihara, H., and Tamon, H.: Porous microfibers and microhoneycombs synthesized by ice templating. Catal. Surv. Asia 10, 161171 (2006).
32.Yan, J., Wu, Z., and Tan, L.: Self-assembly of polystyrene nanoparticles induced by ice templating. in Proceedings of SPIE, edited by Leng, J., Asundi, A.K., and Ecke, W. (Second International Conference on Smart Materials and Nanotechnology in Engineering, SPIE, Weihai, China, 2009), p. 749375.
33.Mukai, S.R., Mitani, K., Murata, S., Nishihara, H., and Tamon, H.: Assembling of nanoparticles using ice crystals. Mater. Chem. Phys. 123, 347350 (2010).
34.Shi, Q., An, Z., Tsung, C-K., Liang, H., Zheng, N., Hawker, C.J., and Stucky, G.D.: Ice-templating of core/shell microgel fibers through “Bricks-and-Mortar” assembly. Adv. Mater. 19, 45394543 (2007).
35.Zhang, H., Edgar, D., Murray, P., Rak-Raszewska, A., Glennon-Alty, L., and Cooper, A.I.: Synthesis of porous microparticles with aligned porosity. Adv. Funct. Mater. 18, 222228 (2008).
36.Witte, A. and Ulrich, J.: An alternative technology to form tablets. Chem. Eng. Technol. 33, 757761 (2010).
37.Pachulski, N. and Ulrich, J.: Production of tablet-like solid bodies without pressure by sol-gel processes. Lett. Drug Des. Discovery 4, 7881 (2007).
38.Szepes, A., Ulrich, J., Farkas, Z., Kovács, J., and Szabó-Révész, P.: Freeze-casting technique in the development of solid drug delivery systems. Chem. Eng. Process 46, 230238 (2007).
39.Ma, L., Jin, A., Xie, Z., and Lin, W.: Freeze drying significantly increases permanent porosity and hydrogen uptake in 4,4-connected metal-organic frameworks. Angew. Chem. 48, 99059908 (2009).
40.Mu, C., Su, Y., Sun, M., Chen, W., and Jiang, Z.: Fabrication of microporous membranes by a feasible freeze method. J. Membr. Sci. 361, 1521 (2010).
41.Li, A., Thornton, A., Deuser, B., and Watts, J.: Freeze-form extrusion fabrication of functionally graded material composites using zirconium carbide and tungsten, in Proceedings of SFF Symposium, edited by Beaman, J., Bourell, D., Crawford, R., Marcus, H., and Seepersad, C.C. (Twenty Third Annual International Solid Freeform Fabrication Symposium, An Additive Manufacturing Conference, The University of Texas at Austin, Austin, Texas, 2012), p. 467.
42.Huang, T., Mason, M., Hilmas, G., and Leu, M.C.: Freeze-form extrusion fabrication of ceramic parts. Virtual Phys. Prototyp. 1, 93100 (2006).
43.Zhao, X., Landers, R.G., and Leu, M.C.: Adaptive extrusion force control of freeze-form extrusion fabrication processes. J. Manuf. Sci. Eng. 132, 064504 (2010).
44.Smay, J.E., Cesarano, J., and Lewis, J.A.: Colloidal inks for directed assembly of 3-D periodic structures. Langmuir 18, 54295437 (2002).
45.Nakata, M., Tanihata, K., Yamaguchi, S., and Suganuma, K.: Fabrication of porous alumina sintered bodies by a Gelate-freezing method. J. Ceram. Soc. Jpn. 113, 712715 (2005).
46.Qian, L., Ahmed, A., Foster, A., Rannard, S.P., Cooper, A.I., and Zhang, H.: Systematic tuning of pore morphologies and pore volumes in macroporous materials by freezing. J. Mater. Chem. 19, 5212 (2009).
47.Schoof, H., Apel, J., Heschel, I., and Rau, G.: Control of pore structure and size in freeze-dried collagen sponges. J. Biomed. Mater. Res. 58, 352357 (2001).
48.Deville, S., Saiz, E., Nalla, R.K., and Tomsia, A.P.: Freezing as a path to build complex composites. Science 311, 515518 (2006).
49.Waschkies, T., Oberacker, R., and Hoffmann, M.J.: Control of lamellae spacing during freeze casting of ceramics using double-side cooling as a novel processing route. J. Am. Ceram. Soc. 92, 7984 (2009).
50.Nishihara, H., Iwamura, S., and Kyotani, T.: Synthesis of silica-based porous monoliths with straight nanochannels using an ice-rod nanoarray as a template. J. Mater. Chem. 18, 36623670 (2008).
51.Zhang, Y., Hu, L., and Han, J.: Preparation of a dense/porous bilayered ceramic by applying an electric field during freeze casting. J. Am. Ceram. Soc. 92, 18741876 (2009).
52.Tang, Y.F., Zhao, K., Wei, J-Q., and Qin, Y.S.: Fabrication of aligned lamellar porous alumina using directional solidification of aqueous slurries with an applied electrostatic field. J. Eur. Ceram. Soc. 30, 19631965 (2010).
53.Porter, M.M., Yeh, M., Strawson, J., Goehring, T., Lujan, S., Siripasopsotorn, P., Meyers, M.A., and McKittrick, J.: Magnetic freeze casting inspired by nature. Mater. Sci. Eng., A 556, 741750 (2012).
54.Kim, J-W., Taki, K., Nagamine, S., and Ohshima, M.: Preparation of porous poly(L-lactic acid) honeycomb monolith structure by phase separation and unidirectional freezing. Langmuir 25, 53045312 (2009).
55.Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., and Ohshima, M.: Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. J. Mater. Sci. 48, 20382045 (2012).
56.Münch, E., Saiz, E., Tomsia, A.P., and Deville, S.: Architectural control of freeze-cast ceramics through additives and templating. J. Am. Ceram. Soc. 92, 15341539 (2009).
57.Sangwal, K.: Additives and Crystallization Processes (John Wiley & Sons, Ltd, Chichester, UK, 2007).
58.Deville, S., Maire, E., Lasalle, A., Bogner, A., Gauthier, C., Leloup, J., and Guizard, C.: In situ x-ray radiography and tomography observations of the solidification of aqueous alumina particle suspensions-part I: Initial instants. J. Am. Ceram. Soc. 92, 24892496 (2009).
59.Sofie, S.W.: Fabrication of functionally graded and aligned porosity in thin ceramic substrates with the novel freeze-tape-casting process. J. Am. Ceram. Soc. 90, 20242031 (2007).
60.Chen, Y., Bunch, J., Li, T., Mao, Z., and Chen, F.: Novel functionally graded acicular electrode for solid oxide cells fabricated by the freeze-tape-casting process. J. Power Sources 213, 9399 (2012).
61.Hostler, S., Abramson, A., Gawryla, M.D., Bandi, S., and Schiraldi, D.A.: Thermal conductivity of a clay-based aerogel. Int. J. Heat Mass Transfer 52, 665669 (2009).
62.Aizenberg, J., Weaver, J.C., Thanawala, M.S., Sundar, V.C., Morse, D.E., and Fratzl, P.: Skeleton of Euplectella sp.: Structural hierarchy from the nanoscale to the macroscale. Science 309, 275278 (2005).
63.Meyers, M.A., Chen, P-Y., Lin, A.Y-M., and Seki, Y.: Biological materials: Structure and mechanical properties. Prog. Mater. Sci. 53, 1206 (2008).
64.Zuo, K., Zeng, Y-P., and Jiang, D.: Effect of polyvinyl alcohol additive on the pore structure and morphology of the freeze-cast hydroxyapatite ceramics. Mater. Sci. Eng., C 30, 283287 (2010).
65.Zhang, Y., Zuo, K., and Zeng, Y-P.: Effects of gelatin addition on the microstructure of freeze-cast porous hydroxyapatite ceramics. Ceram. Int. 35, 21512154 (2009).
66.Ye, F., Zhang, J., Zhang, H., and Liu, L.: Pore structure and mechanical properties in freeze cast porous Si3N4 composites using polyacrylamide as an addition agent. J. Alloys Compd. 506, 423427 (2010).
67.Pekor, C.M., Kisa, P., and Nettleship, I.: Effect of polyethylene glycol on the microstructure of freeze-cast alumina. J. Am. Ceram. Soc. 91, 31853190 (2008).
68.Sobolev, S.L.: Rapid colloidal solidifications under local nonequilibrium diffusion conditions. Phys. Lett. A 1, 14 (2012).
69.Deville, S., Maire, E., Lasalle, A., Bogner, A., Gauthier, C., Leloup, J., and Guizard, C.: In situ x-ray radiography and tomography observations of the solidification of aqueous alumina particles suspensions. Part II: Steady state. J. Am. Ceram. Soc. 92, 24972503 (2009).
70.Elliott, J.A.W. and Peppin, S.S.L.: Particle trapping and banding in rapid colloidal solidification. Phys. Rev. Lett. 107, 168301 (2011).
71.Lasalle, A., Guizard, C., Maire, E., Adrien, J., and Deville, S.: Particle redistribution and structural defect development during ice templating. Acta Mater. 60, 45944603 (2012).
72.Studart, A.R., Studer, J., Xu, L., Yoon, K., Shum, H.C., and Weitz, D.A.: Hierarchical porous materials made by drying complex suspensions. Langmuir 27, 955964 (2011).
73.Mishchenko, L., Hatton, B.D., Kolle, M., and Aizenberg, J.: Patterning hierarchy in direct and inverse opal crystals. Small 8, 19041911 (2012).
74.Araki, K. and Halloran, J.W.: Porous ceramic bodies with interconnected pore channels by a novel freeze casting technique. J. Am. Ceram. Soc. 88, 11081114 (2005).
75.Deville, S., Viazzi, C., Leloup, J., Lasalle, A., Guizard, C., Maire, E., Adrien, J., and Gremillard, L.: Ice shaping properties, similar to that of antifreeze proteins, of a zirconium acetate complex. PLoS One 6, e26474 (2011).
76.Hunger, P.M., Donius, A.E., and Wegst, U.G.K.: Platelets self-assemble into porous nacre during freeze casting. J. Mech. Behav. Biomed. Mater. 19, 8793 (2013).
77.Barr, S.A. and Luijten, E.: Structural properties of materials created through freeze casting. Acta Mater. 58, 709715 (2010).
78.Shen, X., Chen, L., Li, D., Zhu, L., Wang, H., Liu, C., Wang, Y., Xiong, Q., and Chen, H.: Assembly of colloidal nanoparticles directed by the microstructures of polycrystalline ice. ACS Nano 5, 84268433 (2011).
79.Romeo, H.E., Hoppe, C.E., López-Quintela, M.A., Williams, R.J.J., Minaberry, Y., and Jobbágy, M.: Directional freezing of liquid crystalline systems: From silver nanowire/PVA aqueous dispersions to highly ordered and electrically conductive macroporous scaffolds. J. Mater. Chem. 22, 9195 (2012).
80.Hunger, P.M., Donius, A.E., and Wegst, U.G.K.: Structure-property-processing correlations in freeze-cast composite scaffolds. Acta Biomater. 9(5), (2013).
81.Lee, J. and Deng, Y.: The morphology and mechanical properties of layer structured cellulose microfibril foams from ice-templating methods. Soft Matter 7, 6034 (2011).
82.Henzie, J., Grünwald, M., Widmer-Cooper, A., Geissler, P.L., and Yang, P.: Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices. Nat. Mater. 11, 131137 (2012).
83.Israelachvili, J.N., Mitchell, D.J., and Ninham, B.W.: Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc., Faraday Trans. 2 72, 1525 (1976).
84.Brinker, C.J., Lu, Y., Sellinger, A., and Fan, H.: Evaporation-induced self-assembly: Nanostructures made easy. Adv. Mater. 11, 579585 (1999).
85.Amirouche, I., Klotz, M., Viazzi, C., Deville, S., and Guizard, C.: Unexpected self-assembly of amphiphiles below room temperature: A route to novel hierarchical mesoporous materials. Chem. Mater. (submitted).
86.Style, R., Peppin, S.S.L., Cocks, A., and Wettlaufer, J.S.: Ice-lens formation and geometrical supercooling in soils and other colloidal materials. Phys. Rev. E 84, 112 (2011).
87.Style, R.W. and Peppin, S.S.L.: The kinetics of ice-lens growth in porous media. J. Fluid Mech. 692, 482498 (2012).
88.Landi, E., Valentini, F., and Tampieri, A.: Porous hydroxyapatite/gelatine scaffolds with ice-designed channel-like porosity for biomedical applications. Acta Biomater. 4, 16201626 (2008).
89.Fu, Q., Rahaman, M.N., Dogan, F., and Bal, B.S.: Freeze casting of porous hydroxyapatite scaffolds. II. Sintering, microstructure, and mechanical behavior. J. Biomed. Mater. Res. Part B 86, 514522 (2008).
90.Anderson, A.M. and Worster, M.G.: Periodic ice banding in freezing colloidal dispersions. Langmuir 28, 1651216523 (2012).
91.Thies-Weesie, D. and Philipse, A.: Liquid permeation of bidisperse colloidal hard-sphere packings and the Kozeny-Carman scaling relation. J. Colloid Interface Sci. 162, 470480 (1994).
92.Spannuth, M., Mochrie, S., Peppin, S.S.L., and Wettlaufer, J.S.: Particle-scale structure in frozen colloidal suspensions from small-angle x-ray scattering. Phys. Rev. E 83, 32 (2011).
93.Shanti, N.O., Araki, K., and Halloran, J.W.: Particle redistribution during dendritic solidification of particle suspensions. J. Am. Ceram. Soc. 89, 24442447 (2006).
94.Deville, S. and Bernard-Granger, G.: Influence of surface tension, osmotic pressure and pores morphology on the densification of ice-templated ceramics. J. Eur. Ceram. Soc. 31, 983987 (2011).
95.Zheng, J., Salamon, D., Lefferts, L., Wessling, M., and Winnubst, L.: Ceramic microfluidic monoliths by ice templating. Microporous Mesoporous Mater. 134, 216219 (2010).
96.Lake, R.A. and Lewis, L.E.: Salt rejection by sea ice during growth. J. Geophys. Res. 75, 583597 (1970).
97.Worster, M.G. and Wettlaufer, J.S.: Natural convection, solute trapping, and channel formation during solidification of saltwater. J. Phys. Chem. B 101, 61326136 (1997).
98.Hunke, E. C., Notz, D., Turner, A.K., and Vancoppenolle, M.: The multiphase physics of sea ice: A review. Cryosphere Discuss. 5, 19491993 (2011).
99.Petrich, C. and Eicken, H.: In Sea Ice (Wiley-Blackwell, Malden, MA, 2008), pp. 2378.
100.Wettlaufer, J.S. and Worster, M.G.: Natural convection during solidification of an alloy from above with application to the evolution of sea ice. J. Fluid Mech. 344, 291316 (1997).
101.“Brinicle” ice finger of death filmed in Antarctic. (accessed January 22, 2013).
102.Peppin, S.S.L., Elliott, J.A.W., and Worster, M.G.: Solidification of colloidal suspensions. J. Fluid Mech. 554, 147 (2006).
103.Peppin, S.S.L., Majumdar, A., and Wettlaufer, J.S.: Morphological instability of a non-equilibrium ice-colloid interface. Proc. R. Soc. London, Ser. A 466, 177194 (2009).
104.Perey, F.G.J. and Pounder, E.R.: Crystal orientation in ice sheets. Canadian J. Phys. 36, 494502 (1958).
105.Michel, B. and Ramseier, R.O.: Classification of river and lake ice. Canadian Geotech. J. 8, 3645 (1971).
106.Gow, A.J.: Orientation textures in ice sheets of quietly frozen lakes. J. Crystal Growth 74, 247258 (1986).
107.Jeffries, M.O., Weeks, W.F., Shaw, R., and Morris, K.: Structural characteristics of congelation and platelet ice and their role in the development of Antarctic land-fast sea ice. J. Glaciol. 39, 223238 (1993).
108.Cole, D.M.: The microstructure of ice and its influence on mechanical properties. Eng. Fracture Mech. 68, 17971822 (2001).
109.Müller-Stoffels, M., Langhorne, P.J., Petrich, C., and Kempema, E.W.: Preferred crystal orientation in fresh water ice. Cold Reg. Sci. Technol. 56, 19 (2009).
110.Maus, S.: The planar-cellular transition during freezing of natural waters, in Physics and Chemistry of Ice: Proceedings of the 11th International Conference on the Physics and Chemistry of Ice, Bremerhaven, Germany 2006; edited by W.F. Kuhs (Royal Society of Chemistry, Cambridge, UK, 2007), pp. 383389.
111.Kawano, Y. and Ohashi, T.: A mesoscopic numerical study of sea ice crystal growth and texture development. Cold Reg. Sci. Technol. 57, 3948 (2009).
112.Eicken, H., Weissenberger, I., Bussmann, J., Freitag, J., Schuster, W., Delgado, F.V., Evers, K., Jochmann, P., Krembs, C., Gradinger, R., Lindemann, F., Cottier, F., Hall, R., Wadhams, P., Reisemann, M., Kuosa, H., Ikävalko, J., and Leonard, G.H.: Ice tank studies of physical and biological sea-ice processes, in Ice in Surface Waters, edited by Shen, T. (Proceedings of the 14th International Symposium on Ice, Potsdam, New York, 1998), p. 363.
113.Launey, M.E., Munch, E., Alsem, D.H., Barth, H.B., Saiz, E., Tomsia, A.P., and Ritchie, R.O.: Designing highly toughened hybrid composites through nature-inspired hierarchical complexity. Acta Mater. 57, 29192932 (2009).
114.Storey, K. and Storey, J.: Natural freezing survival in animals. Annu. Rev. Ecol. Evol. Syst. 27, 365386 (1996).
115.Devireddy, R.V., Barratt, P.R., Storey, K.B., and Bischof, J.C.: Liver freezing response of the freeze-tolerant wood frog, Rana sylvatica, in the presence and absence of glucose. Cryobiology 38, 327338 (1999).
116.Zhang, Y., Hu, L., Han, J., and Jiang, Z.: Freeze casting of aqueous alumina slurries with glycerol for porous ceramics. Ceram. Int. 36, 617621 (2010).
117.Franks, F.: Nucleation of ice and its management in ecosystems. Philos. Trans. R. Soc. London, Ser. A 361, 557574 (2003).
118.Amornwittawat, N., Wang, S., Duman, J.G., and Wen, X.: Polycarboxylates enhance beetle antifreeze protein activity. Biochim. Biophys. Acta 1784, 19421948 (2008).
119.Scotter, A.J., Marshall, C.B., Graham, L.A., Gilbert, J.A., Garnham, C.P., and Davies, P.L.: The basis for hyperactivity of antifreeze proteins. Cryobiology 53, 229239 (2006).
120.Davies, P.L., Baardsnes, J., Kuiper, M.J., and Walker, V.K.: Structure and function of antifreeze proteins. Philos. Trans. R. Soc. London, Ser. B 357, 927935 (2002).
121.Meister, K., Ebbinghaus, S., Xu, Y., Duman, J.G., DeVries, A., Gruebele, M., Leitner, D.M., and Havenith, M.: Long-range protein-water dynamics in hyperactive insect antifreeze proteins. PNAS 110, 16171622 (2013).
122.Wowk, B., Leitl, E., Rasch, C.M., Mesbah-Karimi, N., Harris, S.B., and Fahy, G.M.: Vitrification enhancement by synthetic ice blocking agents. Cryobiology 40, 228236 (2000).
123.Gibson, M.I., Barker, C.A., Spain, S.G., Albertin, L., and Cameron, N.R.: Inhibition of ice crystal growth by synthetic glycopolymers: Implications for the rational design of antifreeze glycoprotein mimics. Biomacromolecules 10, 328333 (2009).
124.Gibson, M.I.: Slowing the growth of ice with synthetic macromolecules: Beyond antifreeze(glyco) proteins. Polymer Chem. 1, 1141 (2010).
125.Inada, T. and Modak, P.: Growth control of ice crystals by poly(vinyl alcohol) and antifreeze protein in ice slurries. Chem. Eng. Sci. 61, 31493158 (2006).
126.Mastai, Y., Rudloff, J., Cölfen, H., and Antonietti, M.: Control over the structure of ice and water by block copolymer additives. Chemphyschem 3, 119123 (2002).
127.Chakrabartty, A., Yang, D.S., and Hew, C.L.: Structure-function relationship in a winter flounder antifreeze polypeptide. II. Alteration of the component growth rates of ice by synthetic antifreeze polypeptides. J. Bio. Chem. 264, 1131311316 (1989).
128.Deville, S., Viazzi, C., and Guizard, C.: Ice-structuring mechanism for zirconium acetate. Langmuir 28, 1489214898 (2012).
129.Mizrahy, O., Bar-Dolev, M., Guy, S., and Braslavsky, I.: Inhibition of ice growth and recrystallization by zirconium acetate and zirconium acetate hydroxide. PLoS One 8, e59540 (2013).
130.Budke, C. and Koop, T.: Ice recrystallization inhibition and molecular recognition of ice faces by poly(vinyl alcohol). Chemphyschem 7, 26012606 (2006).
131.Azouni, M.A. and Casses, P.: Thermophysical properties effects on segregation during solidification. Adv. Colloid Interface Sci. 75, 83106 (1998).
132.Tao, T., Peng, X.F., and Lee, D.J.: Force of a gas bubble on a foreign particle in front of a freezing interface. J. Colloid Interface Sci. 280, 409416 (2004).
133.Ishiguro, H. and Rubinsky, B.: Mechanical interactions between ice crystals and red blood cells during directional solidification. Cryobiology 31, 483500 (1994).
134.Chang, A., Dantzig, J.A., Darr, B.T., and Hubel, A.: Modeling the interaction of biological cells with a solidifying interface. J. Comput. Phys. 226, 18081829 (2007).
135.Attwater, J., Wochner, A., Pinheiro, V.B., Coulson, A., and Holliger, P.: Ice as a protocellular medium for RNA replication. Nat. Commun. 1, 18 (2010).
136.Liu, R. and Orgel, L.E.: Efficient oligomerization of negatively-charged β-amino acids at −20 °C. J. Am. Chem. Soc. 119, 47914792 (1997).
137.Monnard, P-A., Kanavarioti, A., and Deamer, D.W.: Eutectic phase polymerization of activated ribonucleotide mixtures yields quasi-equimolar incorporation of purine and pyrimidine nucleobases. J. Am. Chem. Soc. 125, 1373413740 (2003).
138.Ferris, J.P.: in The Molecular Origins of Life (Cambridge University Press, Cambridge, 1998), pp. 255268.
139.Graham, J.D. and Roberts, J.T.: Chemical reactions of organic molecules adsorbed at ice: 2. Chloride substitution in 2-methyl-2-propanol. Langmuir 16, 32443248 (2000).
140.Trinks, H., Schröder, W., and Bierbricher, C.K.: Sea ice as a promoter of the emergence of first life. Origins Life Evol. Biosphere 35, 429445 (2005).
141.Zahnle, K.J. and Walker, J.C.G.: The evolution of solar ultraviolet luminosity. Rev. Geophys. 20, 280 (1982).
142.Wynn-Williams, D.D., Cabrol, N.A., Grin, E.A., Haberle, R.M., and Stoker, C.R.: Brines in seepage channels as eluants for subsurface relict biomolecules on Mars? Astrobiology 1, 165184 (2001).
143.Ball, P.: Cold comfort. Nat. Mater. 5, 173174 (2006).
144.Yoshizawa, K., Okuzono, T., Koga, T., Taniji, T., and Yamanaka, J.: Exclusion of impurity particles during grain growth in charged colloidal crystals. Langmuir 27, 1342013427 (2011). Villeneuve, V.W.A., Dullens, R.P.A., Aarts, D.G.A.L., Groeneveld, E., Scherff, J.H., Kegel, W.K., and Lekkerkerker, H.N.W.: Colloidal hard-sphere crystal growth frustrated by large spherical impurities. Science 309, 12311233 (2005).
146.Wettlaufer, J.S. and Worster, M.G.: Premelting dynamics. Annu. Rev. Fluid Mech. 38, 427452 (2006).
147.Workman, E., Truby, F., and Drost-Hansen, W.: Electrical conduction in halide-contaminated ice. Phys. Rev. 94, 1073–1073 (1954).
148.Decroly, J.C., Gränicher, H., and Jaccard, C.: Caractère de la conductivité électrique de la glace. Helv. Phys. Acta 30, 465467 (1957).
149.Bullemer, B., Engelhardt, H., and Riehl, N.: Protonic conductivity of ice I. High temperature region, in Proceedings of the International Symposium on Physics of Ice, Munich, Germany, 1968; edited by N. Riehl, B. Bullemer, and H. Engelhardt (Plenum Press, New York, 1969), pp. 416429.
150.Waschkies, T., Oberacker, R., and Hoffmann, M.J.: Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities. Acta Mater. 59, 51355145 (2011).
151.Ma, H., Gao, Y., Li, Y., Gong, J., Li, X., Fan, B., and Deng, Y.: Ice-templating synthesis of polyaniline microflakes stacked by one-dimensional nanofibers. J. Phys. Chem. C 113, 90479052 (2009).
152.Barg, S., Innocentini, M.D.M., Meloni, R.V., Chacon, W.S., Wang, H., Koch, D., and Grathwohl, G.: Physical and high-temperature permeation features of double-layered cellular filtering membranes prepared via freeze casting of emulsified powder suspensions. J. Membrane Sci. 383, 3543 (2011).
153.Huang, T.S., Rahaman, M.N., Doiphode, N.D., Leu, M.C., Bal, B.S., Day, D.E., and Liu, X.: Porous and strong bioactive glass (13–93) scaffolds fabricated by freeze extrusion technique. Mater. Sci. Eng., C 31, 14821489 (2011).
154.Libbrecht, K.G.: The physics of snow crystals. Rep. Prog. Phys. 68, 855895 (2005).
155.Bogner, A.: unpublished results.
157.Assur, A.: Composition of Sea Ice and its Tensile Strength in Proceedings on the conference Arctic Sea Ice, Easton Maryland, 1958. (National Academy of Science and National Research Council, Washington, DC, 1960), pp. 44.
158.CC-BY 2.0 license: (accessed January 23, 2013).
159.Peltier, R., Evans, C.W., DeVries, A.L., Brimble, M.A., Dingley, A.J., and Williams, D.E.: Growth habit modification of ice crystals using antifreeze glycoprotein (AFGP) analogues. Cryst. Growth Des. 10, 50665077 (2010).
160.Graether, S.P., Kuiper, M.J., Walker, V.K., Jia, Z., Sykes, B.D., and Davies, P.L.: β-Helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect. Nature 46, 325328 (2000).
161.Bar, M., Celik, Y., Fass, D., and Braslavsky, I.: Interactions of β-helical antifreeze protein mutants with ice. Cryst. Growth Des. 8, 29542963 (2008).
162.Trinks, H., Schröder, W., and Biebricher, C.K.: Ice and the origin of life. Origins Life Evol. Biosphere 35, 429445 (2005).
163.Dillon, S.J., Tang, M., Carter, W.C., and Harmer, M.P.: Complexion: A new concept for kinetic engineering in materials science. Acta Mater. 55, 62086218 (2007).


Related content

Powered by UNSILO

Ice-templating, freeze casting: Beyond materials processing

  • Sylvain Deville (a1)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.