Skip to main content Accessibility help

Identifying the stress–strain curve of materials by microimpact testing. Application on pure copper, pure iron, and aluminum alloy 6061-T651

  • Halim Al Baida (a1), Cécile Langlade (a1), Guillaume Kermouche (a2) and Ricardo Rafael Ambriz (a3)

The mechanical response of materials under repeated impact loading is of primary importance to model different types of surface mechanical treatments, such as shot peening. A reverse identification method of stress–strain curves using repeated impact has been developed by Kermouche et al. [Kermouche et al., Mater. Sci. Eng., A 569, 71–77 (2013)] and later improved by Al Baida et al. [Al Baida et al., Mech. Mater. 86, 11–20 (2015)]. This study deals with the experimental validation of this method on three materials: a home-made pure iron, a commercially pure copper, and an industrial aluminum alloy. An approximate method derived from cone indentation theory to check the reverse method reliability. Balls of different sizes have been used to cover a wide enough range of strain. The results are also compared with macroscopic compression and traction tests. The effect of the strain rate on the stress–strain curve is discussed. The conclusion section highlights the rapidity and the ease of use of the reverse identification method.

Corresponding author
a) Address all correspondence to this author. e-mail:
Hide All
1. Abramov, V.O., Abramov, O.V., Sommer, F., Gradov, O.M., and Smirnov, O.M.: Surface hardening of metals by ultrasonically accelerated small metal balls. Ultrasonics 36, 10131019 (1998).
2. Miao, H.Y., Demers, D., Larose, S., Perron, C., and Lévesque, M.: Experimental study of shot peening and stress peen forming. J. Mater. Process. Technol. 210, 20892102 (2010).
3. Murugaratnam, K., Utili, S., and Petrinic, N.: A combined DEM–FEM numerical method for shot peening parameter optimization. Adv. Eng. Softw. 79, 1326 (2015).
4. Mylonas, G.I. and Labeas, G.: Numerical modelling of shot peening process and corresponding products: Residual stress, surface roughness and cold work prediction. Surf. Coat. Technol. 205, 44804494 (2011).
5. Jaspers, S.P.F.C. and Dautzenberg, J.H.: Material behaviour in conditions similar to metal cutting: Flow stress in the primary shear zone. J. Mater. Process. Technol. 122, 322330 (2002).
6. Beghini, M., Bertini, L., and Fontanari, V.: Evaluation of the stress–strain curve of metallic materials by spherical indentation. Int. J. Solids Struct. 43, 24412459 (2006).
7. Collin, J-M., Mauvoisin, G., Bartier, O., El Abdi, R., and Pilvin, P.: Experimental evaluation of the stress–strain curve by continuous indentation using different indenter shapes. Mater. Sci. Eng., A 501, 140145 (2009).
8. Collin, J-M., Mauvoisin, G., Pilvin, P., and El Abdi, R.: Use of spherical indentation data changes to materials characterization based on a new multiple cyclic loading protocol. Mater. Sci. Eng., A 488, 608622 (2008).
9. Kermouche, G., Grange, F., and Langlade, C.: Local identification of the stress–strain curves of metals at a high strain rate using repeated micro-impact testing. Mater. Sci. Eng., A 569, 7177 (2013).
10. Lamri, S., Langlade, C., and Kermouche, G.: Damage phenomena of thin hard coatings submitted to repeated impacts: Influence of the substrate and film properties. Mater. Sci. Eng., A 560, 296305 (2013).
11. Dao, M., Chollacoop, K., Van Vliet, K.J., Venkatesh, T.A., and Suresh, S.: Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 49, 38993918 (2001).
12. Huang, Y., Liu, X., Zhou, Y., Ma, Z., and Lu, C.: Mathematical analysis on the uniqueness of reverse algorithm for measuring elastic-plastic properties by sharp indentation. J. Mater. Sci. Technol. 27, 577584 (2011).
13. Al Baida, H., Kermouche, G., and Langlade, C.: Development of an improved method for identifying material stress–strain curve using repeated micro-impact testing. Mech. Mater. 86, 1120 (2015).
14. D. Systems: Abaqus Explicit (2011).
15. Johnson, K.L.: Contact Mechanics (Cambridge University Press, Cambridge, UK, 1985).
16. Hill, R., Storakers, B., and Zdunek, A.B.: A theoretical study of the Brinell hardness test. Proc. R. Soc. London, Ser. A 423, 301330 (1989).
17. Tabor, D.: The Hardness of Metals (Oxford University Press, Oxford, UK, 2000).
18. Kermouche, G., Loubet, J-L., and Bergheau, J-M.: An approximate solution to the problem of cone or wedge indentation of elastoplastic solids. C. R. Méc. 333, 389395 (2005).
19. Mok, C-H.: The dependence of yield stress on strain rate as determined from ball-indentation tests. Exp. Mech. 6, 8792 (1966).
20. Johnson, G.R. and Cook, W.H.: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 21, 3148 (1985).
21. Meyers, M.A.: Dynamic Behavior of Materials (John Wiley & Sons, Hoboken, NJ, 1994).
22. Peng, C., Zhong, Y., Lu, Y., Narayanan, S., Zhu, T., and Lou, J.: Strain rate dependent mechanical properties in single crystal nickel nanowires. Appl. Phys. Lett. 102, 083102 (2013).
23. Lacaille, V., Kermouche, G., Spinel, D-Y.T., Feulvarch, E., Morel, C., and Bergheau, J-M.: Modeling nitriding enhancement resulting from the NanoPeening treatment of a pure iron. IOP Conf. Ser. Mater. Sci. Eng. 63, 012124 (2014).
24. Ostwaldt, D., Klepaczko, J.R., and Klimanek, P.: Compression tests of polycrystalline α-iron up to high strains over a large range of strain rates. J. Phys. IV 07, 385390 (1997).
25. Al Baida, H., Langlade, C., Kermouche, G., and Ambriz, R.: Identification du comportement mécanique des matériaux à l’aide d’essais de micro-impact répétés. Matér. Tech. 102, 604 (2014).
26. Ambriz, R.R., Froustey, C., and Mesmacque, G.: Determination of the tensile behavior at middle strain rate of AA6061-T6 aluminum alloy welds. Int. J. Impact Eng. 60, 107119 (2013).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed