Skip to main content Accessibility help
×
Home

Imidazole catalyzed silica synthesis: Progress toward understanding the role of histidine in (bio)silicification

  • Mei-Keat Liang, Siddharth V. Patwardhan (a1), Elena N. Danilovtseva, Vadim V. Annenkov (a2) and Carole C. Perry (a1)...

Abstract

Histidine is an amino acid present in proteins involved in biosilica formation and often found in peptides identified during phage display studies but its role(s) and the extent of its involvement in the silica precipitation process is not fully understood. In this contribution we describe results from an in vitro silicification study conducted using poly-histidine (P-His) and a series of different molecular weight synthetic polymers containing the imidazole functionality (polyvinylimidazole, PVI) for comparison. We show that the presence of imidazole from PVI or P-His is able to catalyze silicic acid condensation; the effect being greater for P-His. The catalytic mechanism is proposed to involve the dual features of the imidazole group—its ability to form hydrogen bonds with silicic acid and electrostatic attraction toward oligomeric silicic acid species.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: Carole.Perry@ntu.ac.uk

References

Hide All
1.Shimizu, K., Cha, J., Stucky, G.D., and Morse, D.E.: Silicatein alpha: Cathepsin L-like protein in sponge biosilica. Proc. Nat. Acad. Sci. U.S.A. 95, 6234 (1998).
2.Krasko, A., Lorenz, B., Batel, R., Schroeder, H.C., Müller, I.M., and Müller, W.E.G.: Expression of silicatein and collagen genes in the marine sponge suberites domuncula is controlled by silica and myotrophin. Eur. J. Biochem. 267, 4878 (2000).
3.Zhou, Y., Shimizu, K., Cha, J.N., Stucky, G.D., and Morse, D.E.: Efficient catalysist of polysiloxane synthesis by silicatein-alpha requires specific hydroxy and imidazole functionalities. Angew. Chem. Int. Ed. 38, 779 (1999).
4.Cha, J.N., Shimizu, K., Zhou, Y., Christiansen, S.C., Chmelka, B.F., Stucky, G.D., and Morse, D.E.: Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc. Nat. Acad. Sci. U.S.A. 96, 361 (1999).
5.Roth, K.M., Zhou, Y., Yang, W., and Morse, D.E.: Bifunctional small molecules are biomimetic catalyst for silica synthesis at neutral pH. J. Am. Chem. Soc. 127, 325 (2005).
6.Croce, G., Franche, A., Milanesio, M., Marchese, L., Causa, M., Viterbo, D., Barbaglia, A., Bolis, V., Bavestrello, G., Cerrano, C., Benatti, U., Pozzolini, M., Giovine, M., and Amenitsh, H.: Structural characterisation of siliceous spicules from marine sponges. Biophys. J. 86, 526 (2004).
7.Naik, R.R., Brott, L.L., Clarson, S.J., and Stone, M.O.: Silica-precipitating peptides isolated from a combinatorial phage display peptide library., J. Nanosci. Nanotechnol. 2, 95 (2002).
8.Eteshola, E., Brillson, L.J., and Lee, S.C.: Selection and characteristics of peptides that bind thermally grown silicon dioxide films. Biomol. Eng. 22, 201 (2005).
9.Patwardhan, S.V. and Clarson, S.J.: Silicification and biosilicification: Part 6. Poly-L-Histidine mediated synthesis of silica at neutral pH.. J. Inorg. Organomet. Polym. 13, 49 (2003).
10.Cha, J.N., Stucky, G.D., Morse, D.E., and Deming, T.J.: Biomimetic synthesis of ordered silica structures mediated by block copolypeptides. Nature 403, 289 (2000).
11.Tahir, M.N., Théato, P., Müller, W.E.G., Schröder, H.C., Janshoff, A., Zhang, J., Huth, J., and Tremel, W.: Monitoring the formation of biosilica catalysed by histidine-tagged silicatein. Chem. Commun. 2848, (2004).
12.Tahir, M.N., Théato, P., Müller, W.E.G., Schröder, H.C., Borejko, A., Faiss, S., Janshoff, A., Huth, J., and Tremel, W.: Formation of layered titania and zirconia catalysed by surface-bound silicatein. Chem. Commun. 5533, (2005).
13.Tahir, M.N., Eberhardt, M., Therese, H.A., Kolb, U., Théato, P., Muüller, W.E.G., Schröder, H.C., and Tremel, W.: From single molecules to nanoscopically structured functional materials: Au nanocrystal growth on TiO2 nanowires controlled by surface-bound silicatein. Angew. Chem. Int. Ed. 45, 4803 (2006).
14.Sumerel, J.L., Yang, W.J., Kisailus, D., Weaver, J.C., Choi, J.H., and Morse, D.E.: Biocatalytically templated synthesis of titanium dioxide. Chem. Mater. 15, 4804 (2003).
15.Kisailus, D., Choi, J.H., Weaver, J.C., Yang, W.J., and Morse, D.E.: Enzymatic synthesis and nanostructural control of gallium oxide at low temperature. Adv. Mater. 17, 314 (2005).
16. Marvin 5.0.0, 40 ChemAxon (http://www.chemaxon.com).
17.Mazyar, N.L., Annenkov, V.V., Kruglova, V.A., Anabev, S.M., Danilovtseva, E.N., Rokhin, A.V., and Zinchenko, S.V.: Acid-base properties of poly(1-vinlyazoles) in aqueous solution. Russ. Chem. Bull. Int. Ed. 49, 2013 (2000).
18.Cabot, B., Deratani, A., and Foissy, A.: Adsorption of poly (vinylimidazoles) onto silica surfaces. Colloids Surf., A 139, 287 (1998).
19.Roques-Carmes, T., Membrey, F., Kaisheva, M., Filiâtre, C., and Foissy, A.: Reflectometric study of the adsorption of poly(vinyl imidazole) on a gold electrode, effects of pH, and applied potential., J. Colloid Interface Sci. 299, 504 (2006).
20.Popping, B., Deratani, A., Sebille, B., Desbois, N., Lamarche, J.M., and Foissy, A.: The effects of electrical charge on the adsorption of a weak cationic polyelectrolyte onto silica, silicon carbide and calcium fluoride. Colloids Surf., A 64, 125 (1992).
21.Annenkov, V.V., Danilovtseva, E.N., Likhoshway, Y.V., Patwardhan, S.V., and Perry, C.C.: Controlled stabilization of silicic acid below pH 9 using poly(1-vinylimidazole)., J. Mater. Chem. 18, 553 (2008).
22.Eskin, V.E., Magarik, S.Y., Zhuraev, U.B., and Rudkovskaya, G.D.: Light-scattering, viscosity and dynamic Birefringence of polynormal-vinylimidazole solutions. Vysokomolekulyarnye Soedineniya Seriya A 20, 2219 (1978).
23.Iler, R.K.: The Chemistry of Silica (John Wiley & Sons, New York, 1979).
24.Belton, D., Paine, G., Patwardhan, S.V., and Perry, C.C.: Towards and understanding of (bio)silicification: The role of amino acids and lysine oligomers in silicification., J. Mater. Chem. 14, 2231 (2004).
25.Harrison, C.C. and Loton, N.: Novel routes to designer silicas: Studies of the decomposition of (M+)2[Si(C6H4O2)3.xH2O]. Importance of M+ identity to the kinetics of oligomerization and the structural characteristics of silica produced. J. Chem. Soc., Faraday Trans. 91, 4287 (1995).
26.Brunauer, S., Emmett, P.H., and Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309 (1938).
27.Barrett, E.P., Joyner, L.G., and Halenda, P.P.: The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373 (1951).
28.Belton, D., Patwardhan, S.V., and Perry, C.C.: Putrescine homologues control silica morphogenesis by electrostatic interactions and the hydrophobic effect. Chem. Commun. 3475 (2005).
29.Belton, D., Patwardhan, S.V., and Perry, C.C.: Spermine, spermidine and their analogues generate tailored silicas. J. Mater. Chem. 15, 4629 (2005).
30.Böhmer, M.R., Heesterbeek, W.H.A., Deratani, A., and Renard, E.: Adsorption of partially quarternised poly(vinyl imidazoles) onto SiO2 and Y2O3. Colloids Surf., A 99, 53 (1995).
31.Ghiotti, G., Garrone, E., and Boccuzzi, F.: Infrared study of physical adsorption. 2. NO on silica aerosil surfaces. J. Phys. Chem. 91, 5640 (1987).
32.Annenkov, V.V., Danilovtseva, E.N., Filina, E.A., and Likhoshway, Y.V.: Interaction of silicic acid with poly(1-vinylimidazole). J. Polym. Sci., Part A: Polym. Chem. 44, 820 (2006).

Keywords

Related content

Powered by UNSILO

Imidazole catalyzed silica synthesis: Progress toward understanding the role of histidine in (bio)silicification

  • Mei-Keat Liang, Siddharth V. Patwardhan (a1), Elena N. Danilovtseva, Vadim V. Annenkov (a2) and Carole C. Perry (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.