Skip to main content

In situ Tensile Testing of Nanoscale Freestanding Thin Films Inside a Transmission Electron Microscope

  • M.A. Haque (a1) and M.T.A. Saif (a2)

The unique capability of rendering opaque specimens transparent with atomic resolution makes transmission electron microscopy (TEM) an indispensable toolfor microstructural and crystallographic analysis of materials. Conventional TEM specimens are placed on grids about 3 mm in diameter and 10–100 μm thick. Such stringent size restriction has precluded mechanical testing inside the TEM chamber.So far, in situ testing of nanoscale thin foils has been mostly qualitative. Micro-electro-mechanical systems (MEMS) offer an unprecedented level of miniaturization to realize sensors and actuators that can add TEM visualization to nano-mechanical characterization. We present a MEMS-based uniaxial tensile experiment setup that integrates nanoscale freestanding specimens with force and displacement sensors, which can be accommodated by a conventional TEM straining stage. In situ TEM testing on 100-nm-thick freestanding aluminum specimens (with simultaneous stress measurement) show limited dislocation activity in the grain interior and consequent brittle mode of fracture. Plasticity at this size scale is contributed by grain boundary dislocations and partial dislocations.

Corresponding author
a)Address all correspondence to this author. e-mail:
Hide All
1Newbury D.E. and Williams D.B.: The electron microscope: The materials characterization tool of the millenium. Acta Mater. 48, 323 (2000).
2Couret A., Crestou J., Farenc S., Molénat G., Clément N., Coujou A. and Caillard D.: In situ deformation in TEM: Recent developments. Microsc. Microanal. Microstruct. 4, 153 (1993).
3Robertson I.M., Lee T.C. and Birnbaum H.K.: Application of in-situ TEM deformation technique to observe how ‘clean’ and doped grain boundaries respond to local stress concentrations. Ultramicroscopy 40, 330 (1992).
4Messerschmidt U.: In situ straining experiments in the transmission electron microscope J. Phys. 3, 2123 (1993).
5Messerschmidt U. and Bartsch M.: High-temperature straining stage for in situ experiments in the high-voltage electron microscope Ultramicroscopy 56, 163 (1994).
6Yeadon M.: Introduction to in situ electron microscopy in the materials sciences. Microsc. Res. Tech. 42, 239 (1998).
7Messerschmidt U. and Appel F.: Quantitative tensile-tilting stages for the high voltage electron microscope. Ultramicroscopy 1, 223 (1976).
8Robach J.S., Robertson I.M., Wirth B.D. and Arsenlis A.: In-situ transmission electron microscopy observations and molecular dynamics simulations of dislocation–defect interactions in ion-irradiated copper. Philos. Mag. 83, 955 (2003).
9Louchet F., Doisneau-Cottignies B., Calonne O., Fraczkiewicz A., Janecek M. and Guelton N.: Is plastic flow always controlled by dislocation mobility? An answer from in situ transmission electron microscopy straining tests. J. Microsc. 203, 84 (2001).
10Pettinari F., Couret A., Caillard D., Molénat G., Clément N. and Coujou A.: Quantitative measurements in in situ straining experiments in transmission electron microscopy. J. Microsc. 203, 47 (2001).
11Werner M., Bartsch M., Messerschmidt U. and Baither D.: TEM observations of dislocation motion in polycrystalline silicon during in situ straining in the high voltage electron microscope. Phys. Status Solidi A 146, 133 (1994).
12McCabe R.J., Misra A., and Mitchell T.E.: Study of dislocations in copper by weak beam, stereo, and in situ straining TEM, in Electron Microscopy: Its Role in Materials Science, The Mike Meshii Symposium J.R. Weertman, M. Fine, K. Faber, W. King, and P. Liaw (TMS Annual Meeting, 2003), pp. 2531.
13Teter D.F., Robertson I.M. and Birnbaum H.K.: The effects of hydrogen on the deformation and fracture of [beta]-titanium. Acta Mater. 49, 4313 (2001).
14Xu Y. and Schulson E.M.: Dislocation-grain boundary interactions in Ni3Ga with and without boron: In situ TEM deformation. Scripta Mater. 33, 931 (1995).
15Haeussler D., Messerschmidt U., Bartsch M., Appel F. and Wagner R.: In situ high-voltage electron microscope deformation study of a two-phase (2+) Ti–Al alloy. Mater. Sci. Eng. A233, 15 (1997).
16Jiang B., Tsugio T., Mori H. and Hsu T.Y.: In-situ TEM observation of γ-ϵ martensitic transformation during tensile straining in an Fe–Mn–Si shape memory alloy. Mater. Trans., JIM 38, 1072 (1997).
17Foecke T. and Kramer D.E.: In situ TEM observations of fracture in nanolaminated metallic thin films. Int. J. Fracture 119/120, 351 (2003).
18Hsiung L.M., Schwartz A.J. and Nieh T.G.: In situ TEM observations of interface sliding and migration in a refined lamellar TiAl alloy. Intermetallics 12, 727 (2004).
19Wang Z., McCabe R.J., Ghoniem N.M., LeSar R., Misra A. and Mitchell T.E.: Dislocation motion in thin Cu foils: A comparison between computer simulations and experiment. Acta Mater. 52, 1535 (2004).
20Youngdahl C.J., Weertman J.R., Hugo R.C. and Kung H.H.: Deformation behavior in nanocrystalline copper. Scripta Mater. 44, 1475 (2001).
21Hugo R.C., Kung H., Weertman J.R., Mitra R., Knapp J.A. and Follstaedt D.M.: In-situ TEM tensile testing of dc magnetron sputtered and pulsed laser deposited Ni thin films. Acta Mater. 51, 1937 (2003).
22Demczyk B.G., Wang Y.M., Cumings J., Hetman M., Han W., Zettl A. and Ritchie R.O.: Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater. Sci. Eng. A 334, 173 (2002).
23Wang Z.L.: New developments in transmission electron microscopy for nanotechnology. Adv. Mater. 15, 1497 (2003).
24Koch C.C. and Narayan J.: The inverse Hall–Petch effect—Fact or artifact, in Structure and Mechanical Properties of Nanophase Materials—Theory and Computer Simulations vs. Experiment, edited by Farkas D., Kung H., Mayo M., Van Swygenhoven H., and Weertman J. (Mater. Res. Soc. Symp. 634, Warrendale, PA, 2001), p. B511.
25Gutkin M.Y., Ovidko I.A. and Pande C.S.: Theoretical models of plastic deformation processes in nano-crystalline materials. Rev. Adv. Mater. Sci. 2, 80 (2001).
26Yamakov V., Wolf D., Phillpot S.R., Mukherjee A.K. and Gleiter H.: Deformation-mechanism map for nanocrystalline metals by molecular dynamics simulation. Nat. Mater. 3, 43 (2003).
27Kumar K.S., Swygenhoven H.V. and Suresh S.: Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51, 5743 (2003).
28Saif M.T.A. and MacDonald N.C.: Micro instruments for submicron material studies. J. Mater. Res. 13, 3353 (1998).
29Haque M.A. and Saif M.T.A.: Deformation mechanisms in free-standing nano-scale thin films: A quantitative in-situ TEM study. Proc. Natl. Acad. Sci. U.S.A. 101, 6335 (2004).
30Haque M.A. and Saif M.T.A.: A review on micro and nano-mechanical testing with MEMS. Exp. Mech. (Invited) 43, 1 (2003).
31Haque M.A. and Saif M.T.A.: Application of MEMS force sensors for in situ mechanical characterization of nano-scale thin films in SEM and TEM. Sens. Actuators, A 97–98, 239 (2002).
32Saif M.T.A., Zhang S., Haque M.A. and Hsia K.: Effect of native Al2O3 on the elastic modulus of thin Al films. Acta Mater. 50, 2779 (2002).
33Arzt E.: Size effects in materials due to microstructural and dimensional constraints: A comparative review. Acta Mater. 46, 5611 (1998).
34Gutkin M.Y., Ovidko I.A. and Pande C.S.: Theoretical models of plastic deformation processes in nano-crystalline materials. Rev. Adv. Mat. Sci. 2, 80 (2001).
35Gao H., Huang Y., Nix W.D. and Hutchinson J.W.: Mechanism-based strain gradient plasticity—I. Theory. J. Mech. Phys. Sol. 47, 1239 (1999).
36Eshelby J.D.: Uniformly moving dislocations. Proc. Phys. Soc. A62, 307 (1949).
37Nabarro F.R.: Theory of Crystal Dislocations (Oxford University Press, Oxford, U.K., 1967).
38Kocks U.F.: The relation between polycrystal deformation and single crystal deformation. Metall. Trans. 1, 1121 (1970).
39Wang N., Wang Z., Aust K.T. and Erb U.: Effect of grain size on mechanical properties of nano-crystalline materials. Acta Mater. 43, 519 (1995).
40Haque M.A. and Saif M.T.A.: Strain gradient effect in nanoscale thin films. Acta Mater. 51, 3053 (2003).
41Haque M.A. and Saif M.T.A.Thermo-mechanical properties of nanoscale freestanding aluminum films. Thin Solid Films 484(1–2), 364 (2005).
42Swygenhoven H.V.: Plastic deformation in metals with nanosized grains: Atomistic simulations and experiments. Mater. Sci. Forum 447–448, 3 (2004).
43Schiotz J., DiTolla F.F. and Jacobsen K.W.: Softening of nanocrystalline metals at very small grain sizes. Nature 391, 561 (1998).
44Czubayko U., Sursaeva V.G., Gottstein G. and Shvindlerman L.S.: Influence of triple junctions on grain boundary motion. Acta Mater. 46, 5863 (1988).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 104 *
Loading metrics...

Abstract views

Total abstract views: 186 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd November 2017. This data will be updated every 24 hours.