Skip to main content
×
Home
    • Aa
    • Aa

In situ transmission electron microscopic investigations of reduction-oxidation reactions during densification of nickel nanoparticles

  • Misa Matsuno (a1), Cecile S. Bonifacio (a1), Jorgen F. Rufner (a1), Andrew M. Thron (a1), Troy B. Holland (a1), Amiya K. Mukherjee (a1) and Klaus van Benthem (a1)...
Abstract
Abstract

The consolidation of crystalline powders to obtain dense microstructures is typically achieved through a combination of volume and grain boundary diffusion. In situ transmission electron microscopy was utilized to study neck formation between adjacent nickel particles during the early stages of sintering. It was found that the presence of carbon during consolidation of Ni lowers the reduction temperature of nickel oxides on the particle surface and therefore has the potential to accelerate consolidation. In the absence of carbon, the surface oxides remain present during the early stage of sintering and neck formation between particles is limited by self-diffusion of nickel through the oxide layer. This study provides direct experimental evidence that corroborates related earlier hypotheses of self-cleaning on the surface of the nanoparticles that precedes neck formation and growth.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: benthem@ucdavis.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

2. S-J.L. Kang : Sintering: Densification, Grain Growth, and Microstructure (Elsevier Butterworth-Heinemann, Amsterdam, Netherlands, 2005).

5. E.A. Olevsky , S. Kandukuri , and L. Froyen : Consolidation enhancement in spark-plasma sintering: Impact of high heating rates. J. Appl. Phys. 102, 114913114924 (2007).

6. R. Orrù , R. Licheri , A.M. Locci , A. Cincotti , and G. Cao : Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater. Sci. Eng., R 63, 127287 (2009).

7. Z.A. Munir , U. Anselmi-Tamburini , and M. Ohyanagi : The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J. Mater. Sci. 41, 763777 (2006).

8. W. Chen , U. Anselmi-Tamburini , J.E. Garay , J.R. Groza , and Z.A. Munir : Fundamental investigations on the spark plasma sintering/synthesis process. I. Effect of dc pulsing on reactivity. Mater. Sci. Eng., A 394, 132138 (2005).

9. U. Anselmi-Tamburini , J.E. Garay , Z.A. Munir , A. Tacca , F. Maglia , and G. Spinolo : Spark plasma sintering and characterization of bulk nanostructured fully stabilized zirconia: Part I. Densification studies. J. Mater. Res. 19, 32553262 (2004).

10. U. Anselmi-Tamburini , J.E. Garay , and Z.A. Munir : Fundamental investigations on the spark plasma sintering/synthesis process. III. Current effect on reactivity. Mater. Sci. Eng., A 407, 2430 (2005).

11. V.Y. Kodash , J.R. Groza , K.C. Cho , B.R. Klotz , and R.J. Dowding : Field-assisted sintering of Ni nanopowders. Mater. Sci. Eng., A 385, 367371 (2004).

13. B. Basu , J.H. Lee , and D.Y. Kim : Development of nanocrystalline wear-resistant Y-TZP ceramics. J. Am. Ceram. Soc. 87, 17711774 (2004).

14. M. Yue , J.X. Zhang , W.Q. Liu , and G.P. Wang : Chemical stability and microstructure of Nd-Fe-B magnet prepared by spark plasma sintering. J. Magn. Magn. Mater. 271, 364368 (2004).

15. X.L. Su , P.L. Wang , W.W. Chen , Z.J. Shen , M. Nygren , Y.B. Cheng , and D.S. Yan : Optical properties of SPS-ed Y- and (Dy, Y)-alpha-sialon ceramics. J. Mater. Sci. 39, 62576262 (2004).

16. L.J. Zhou , Z. Zhao , A. Zimmermann , F. Aldinger , and M. Nygren : Preparation and properties of lead zirconate stannate titanate sintered by spark plasma sintering. J. Am. Ceram. Soc. 87, 606611 (2004).

17. X. Chen , K.A. Khor , S.H. Chan , and L.G. Yu : Overcoming the effect of contaminant in solid oxide fuel cell (SOFC) electrolyte: Spark plasma sintering (SPS) of 0.5 wt% silica-doped yttria- stabilized zirconia (YSZ). Mater. Sci. Eng., A 374, 6471 (2004).

20. J.R. Groza and A. Zavaliangos : Sintering activation by external electrical field. Mater. Sci. Eng., A 287, 171177 (2000).

22. G.Q. Xie , O. Ohashi , N. Yamaguchi , and A.R. Wang : Effect of surface oxide films on the properties of pulse electric-current sintered metal powders. Metall. Mater. Trans. A 34, 26552661 (2003).

23. N. Sato : Theory for breakdown of anodic oxide films on metals. Electrochim. Acta 16, 1683 (1971).

24. Z.A. Munir : Analytical treatment of the role of surface oxide layers in the sintering of metals. J. Mater. Sci. 14, 27332740 (1979).

25. M. Tokita : Trends in advanced SPS spark plasma sintering systems and technology. Jpn. Soc. Powder Technol. 30, 790804 (1993).

26. D.M. Hulbert , D. Jiang , U. Anselmi-Tamburini , C. Unuvar , and A.K. Mukherjee : Experiments and modeling of spark plasma sintered, functionally graded boron carbide-aluminum composites. Mater. Sci. Eng., A 488, 333338 (2008).

27. S.K. Sharma , F.J. Vastola , and P.L. Walker : Reduction of nickel oxide by carbon. 2. Interaction between nickel oxide and natural graphite. Carbon 35, 529533 (1997).

28. W. Baukloh and F. Springorum : Reduction of nickel- and copper oxide with solid carbon. Z. Anorg. Allg. Chem. 230, 315320 (1937).

29. L.M. Gandia and M. Montes : Effect of thermal treatments on the properties of nickel and cobalt activated charcoal-supported catalysts. J. Catal. 145, 276288 (1994).

30. M.A. Asoro , D. Kovar , Y. Shao-Horn , L.F. Allard , and P.J. Ferreira : Coalescence and sintering of Pt nanoparticles: In situ observation by aberration-corrected HAADF STEM. Nanotechnology 21, 025701 (2010).

31. S.B. Simonsen , I. Chorkendorff , S. Dahl , M. Skoglundh , J. Sehested , and S. Helveg : Ostwald ripening in a Pt/SiO(2) model catalyst studied by in situ TEM. J. Catal. 281, 147155 (2011).

32. I. Janowska , M.S. Moldovan , O. Ersen , H. Bulou , K. Chizari , M.J. Ledoux , and P.H. Cuong : High temperature stability of platinum nanoparticles on few-layer graphene investigated by in situ high-resolution transmission electron microscopy. Nano Res. 4, 511521 (2011).

33. K. Ida , Y. Sugiyama , Y. Chujyo , M. Tomonari , T. Tokunaga , K. Sasaki , and K. Kuroda : In situ TEM studies of the sintering behavior of copper nanoparticles covered by biopolymer nanoskin. J. Electron Microsc. 59, S75S80 (2010).

34. R. Ristau , R. Tiruvalam , P.L. Clasen , E.P. Gorskowski , M.P. Harmer , C.J. Kiely , I. Hussain , and M. Brust : Electron microscopy studies of the thermal stability of gold nanoparticle arrays. Gold Bull. 42, 133143 (2009).

35. T.B. Holland , A.M. Thron , C.S. Bonifacio , A.K. Mukherjee , and K. van Benthem : Field assisted sintering of nickel nanoparticles during in situ transmission electron microscopy. Appl. Phys. Lett. 96, 243106 (2010).

36. M. Hummelgard , R.Y. Zhang , H.E. Nilsson , and H. Olin : Electrical sintering of silver nanoparticle ink studied by in situ TEM probing. PLoS One 6, e30106 (2011).

38. E.H. Conrad , R.M. Aten , D.S. Kaufman , L.R. Allen , T. Engel , M. Dennijs , and E.K. Riedel : Observation of surface roughening on Ni (115). J. Chem. Phys. 84, 10151028 (1986).

39. P.S. Maiya and J.M. Blakely : Surface self-diffusion and surface energy of nickel. J. Appl. Phys. 38, 698 (1967).

40. J. Li , S.J. Dillon , and G.S. Rohrer : Relative grain boundary area and energy distributions in nickel. Acta Mater. 57, 43044311 (2009).

41. P. Hassen : Physical Metallurgy, 3rd ed. (Cambridge University Press, Cambridge, UK, 1996).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 8
Total number of PDF views: 17 *
Loading metrics...

Abstract views

Total abstract views: 120 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd June 2017. This data will be updated every 24 hours.