Skip to main content Accessibility help
×
×
Home

In situ transmission electron microscopic investigations of reduction-oxidation reactions during densification of nickel nanoparticles

  • Misa Matsuno (a1), Cecile S. Bonifacio (a1), Jorgen F. Rufner (a1), Andrew M. Thron (a1), Troy B. Holland (a1), Amiya K. Mukherjee (a1) and Klaus van Benthem (a1)...

Abstract

The consolidation of crystalline powders to obtain dense microstructures is typically achieved through a combination of volume and grain boundary diffusion. In situ transmission electron microscopy was utilized to study neck formation between adjacent nickel particles during the early stages of sintering. It was found that the presence of carbon during consolidation of Ni lowers the reduction temperature of nickel oxides on the particle surface and therefore has the potential to accelerate consolidation. In the absence of carbon, the surface oxides remain present during the early stage of sintering and neck formation between particles is limited by self-diffusion of nickel through the oxide layer. This study provides direct experimental evidence that corroborates related earlier hypotheses of self-cleaning on the surface of the nanoparticles that precedes neck formation and growth.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: benthem@ucdavis.edu

References

Hide All
1.German, R.M.: Sintering Theory and Practice (John Wiley & Sons, Inc., New York, 1996).
2.Kang, S-J.L.: Sintering: Densification, Grain Growth, and Microstructure (Elsevier Butterworth-Heinemann, Amsterdam, Netherlands, 2005).
3.Chiang, Y-M., Birnie, D.P., and Kingery, W.D.: Physical Ceramics (John Wiley & Sons, Weinheim, Germany, 1996).
4.Munir, Z.A. and German, R.M.: Generalized model for prediction of periodic trends in activation of sintering of refractory metals. High Temp. Sci. 9, 275283 (1977).
5.Olevsky, E.A., Kandukuri, S., and Froyen, L.: Consolidation enhancement in spark-plasma sintering: Impact of high heating rates. J. Appl. Phys. 102, 114913114924 (2007).
6.Orrù, R., Licheri, R., Locci, A.M., Cincotti, A., and Cao, G.: Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater. Sci. Eng., R 63, 127287 (2009).
7.Munir, Z.A., Anselmi-Tamburini, U., and Ohyanagi, M.: The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J. Mater. Sci. 41, 763777 (2006).
8.Chen, W., Anselmi-Tamburini, U., Garay, J.E., Groza, J.R., and Munir, Z.A.: Fundamental investigations on the spark plasma sintering/synthesis process. I. Effect of dc pulsing on reactivity. Mater. Sci. Eng., A 394, 132138 (2005).
9.Anselmi-Tamburini, U., Garay, J.E., Munir, Z.A., Tacca, A., Maglia, F., and Spinolo, G.: Spark plasma sintering and characterization of bulk nanostructured fully stabilized zirconia: Part I. Densification studies. J. Mater. Res. 19, 32553262 (2004).
10.Anselmi-Tamburini, U., Garay, J.E., and Munir, Z.A.: Fundamental investigations on the spark plasma sintering/synthesis process. III. Current effect on reactivity. Mater. Sci. Eng., A 407, 2430 (2005).
11.Kodash, V.Y., Groza, J.R., Cho, K.C., Klotz, B.R., and Dowding, R.J.: Field-assisted sintering of Ni nanopowders. Mater. Sci. Eng., A 385, 367371 (2004).
12.Nygren, M. and Shen, Z.J.: Novel assemblies via spark plasma sintering. Silicates Industriels 69, 211218 (2004).
13.Basu, B., Lee, J.H., and Kim, D.Y.: Development of nanocrystalline wear-resistant Y-TZP ceramics. J. Am. Ceram. Soc. 87, 17711774 (2004).
14.Yue, M., Zhang, J.X., Liu, W.Q., and Wang, G.P.: Chemical stability and microstructure of Nd-Fe-B magnet prepared by spark plasma sintering. J. Magn. Magn. Mater. 271, 364368 (2004).
15.Su, X.L., Wang, P.L., Chen, W.W., Shen, Z.J., Nygren, M., Cheng, Y.B., and Yan, D.S.: Optical properties of SPS-ed Y- and (Dy, Y)-alpha-sialon ceramics. J. Mater. Sci. 39, 62576262 (2004).
16.Zhou, L.J., Zhao, Z., Zimmermann, A., Aldinger, F., and Nygren, M.: Preparation and properties of lead zirconate stannate titanate sintered by spark plasma sintering. J. Am. Ceram. Soc. 87, 606611 (2004).
17.Chen, X., Khor, K.A., Chan, S.H., and Yu, L.G.: Overcoming the effect of contaminant in solid oxide fuel cell (SOFC) electrolyte: Spark plasma sintering (SPS) of 0.5 wt% silica-doped yttria- stabilized zirconia (YSZ). Mater. Sci. Eng., A 374, 6471 (2004).
18.Aldica, G., Khodash, V., Badica, P., and Groza, J.R.: Electrical conduction in initial field assisted sintering stages. J. Optoelectron. Adv. Mater. 9, 38633870 (2007).
19.Groza, J.R., Garcia, M., and Schneider, J.A.: Surface effects in field-assisted sintering. J. Mater. Res. 16, 286292 (2001).
20.Groza, J.R. and Zavaliangos, A.: Sintering activation by external electrical field. Mater. Sci. Eng., A 287, 171177 (2000).
21.Xie, G.Q., Ohashi, O., Yamaguchi, N., Song, M., Mitsuishi, K., Furuya, K., and Noda, T.: Reduction of surface oxide films in Al-Mg alloy powders by pulse electric current sintering. J. Mater. Res. 19, 815819 (2004).
22.Xie, G.Q., Ohashi, O., Yamaguchi, N., and Wang, A.R.: Effect of surface oxide films on the properties of pulse electric-current sintered metal powders. Metall. Mater. Trans. A 34, 26552661 (2003).
23.Sato, N.: Theory for breakdown of anodic oxide films on metals. Electrochim. Acta 16, 1683 (1971).
24.Munir, Z.A.: Analytical treatment of the role of surface oxide layers in the sintering of metals. J. Mater. Sci. 14, 27332740 (1979).
25.Tokita, M.: Trends in advanced SPS spark plasma sintering systems and technology. Jpn. Soc. Powder Technol. 30, 790804 (1993).
26.Hulbert, D.M., Jiang, D., Anselmi-Tamburini, U., Unuvar, C., and Mukherjee, A.K.: Experiments and modeling of spark plasma sintered, functionally graded boron carbide-aluminum composites. Mater. Sci. Eng., A 488, 333338 (2008).
27.Sharma, S.K., Vastola, F.J., and Walker, P.L.: Reduction of nickel oxide by carbon. 2. Interaction between nickel oxide and natural graphite. Carbon 35, 529533 (1997).
28.Baukloh, W. and Springorum, F.: Reduction of nickel- and copper oxide with solid carbon. Z. Anorg. Allg. Chem. 230, 315320 (1937).
29.Gandia, L.M. and Montes, M.: Effect of thermal treatments on the properties of nickel and cobalt activated charcoal-supported catalysts. J. Catal. 145, 276288 (1994).
30.Asoro, M.A., Kovar, D., Shao-Horn, Y., Allard, L.F., and Ferreira, P.J.: Coalescence and sintering of Pt nanoparticles: In situ observation by aberration-corrected HAADF STEM. Nanotechnology 21, 025701 (2010).
31.Simonsen, S.B., Chorkendorff, I., Dahl, S., Skoglundh, M., Sehested, J., and Helveg, S.: Ostwald ripening in a Pt/SiO(2) model catalyst studied by in situ TEM. J. Catal. 281, 147155 (2011).
32.Janowska, I., Moldovan, M.S., Ersen, O., Bulou, H., Chizari, K., Ledoux, M.J., and Cuong, P.H.: High temperature stability of platinum nanoparticles on few-layer graphene investigated by in situ high-resolution transmission electron microscopy. Nano Res. 4, 511521 (2011).
33.Ida, K., Sugiyama, Y., Chujyo, Y., Tomonari, M., Tokunaga, T., Sasaki, K., and Kuroda, K.: In situ TEM studies of the sintering behavior of copper nanoparticles covered by biopolymer nanoskin. J. Electron Microsc. 59, S75S80 (2010).
34.Ristau, R., Tiruvalam, R., Clasen, P.L., Gorskowski, E.P., Harmer, M.P., Kiely, C.J., Hussain, I., and Brust, M.: Electron microscopy studies of the thermal stability of gold nanoparticle arrays. Gold Bull. 42, 133143 (2009).
35.Holland, T.B., Thron, A.M., Bonifacio, C.S., Mukherjee, A.K., and van Benthem, K.: Field assisted sintering of nickel nanoparticles during in situ transmission electron microscopy. Appl. Phys. Lett. 96, 243106 (2010).
36.Hummelgard, M., Zhang, R.Y., Nilsson, H.E., and Olin, H.: Electrical sintering of silver nanoparticle ink studied by in situ TEM probing. PLoS One 6, e30106 (2011).
37.Gaskell, D.R.: Introduction to the Thermodynamics of Materials, 5th ed. (Taylor & Francis, New York, Oxford, 2008).
38.Conrad, E.H., Aten, R.M., Kaufman, D.S., Allen, L.R., Engel, T., Dennijs, M., and Riedel, E.K.: Observation of surface roughening on Ni (115). J. Chem. Phys. 84, 10151028 (1986).
39.Maiya, P.S. and Blakely, J.M.: Surface self-diffusion and surface energy of nickel. J. Appl. Phys. 38, 698 (1967).
40.Li, J., Dillon, S.J., and Rohrer, G.S.: Relative grain boundary area and energy distributions in nickel. Acta Mater. 57, 43044311 (2009).
41.Hassen, P.: Physical Metallurgy, 3rd ed. (Cambridge University Press, Cambridge, UK, 1996).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed