Skip to main content

Indentation response of nanoporous gold from atomistic simulations

  • Diana Farkas (a1), Joshua Stuckner (a1), Rachel Umbel (a1), Bryan Kuhr (a1) and Michael J. Demkowicz (a2)...

We present classical potential molecular dynamics simulations of nanoporous gold (np-Au) impacted by a spherical indenter. The atomic structure was generated using a phase field model as a template. In agreement with previous experiments, we observe densification in the region under the indenter. The hardness values obtained from our simulations exhibit a transition from an initially perfect-plastic plateau to hardening behavior in the later stages of indentation. This transition occurs when the relative density beneath the indenter exceeds ∼0.9. Hardness values obtained from the nanoindentation simulations reach 0.6 GPa, due to the densification of the material under the indenter. Elevated dislocation densities are observed in the densified region. The mechanism of pore collapse in the densified layer under the indenter is seen to switch from uniaxial to triaxial, consistent with a change in deformation mechanism from one based on shearing of individual ligaments in np-Au to one involving dislocation-mediated plasticity around voids in a Au single crystal undergoing uniaxial compression.

Corresponding author
a)Address all correspondence to this author. e-mail:
Hide All
1.Biener, J., Hodge, A.M., Hamza, A.V., Hsiung, L.M., and Satcher, J.H.: Nanoporous Au: A high yield strength material. J. Appl. Phys. 97, 4 (2005).
2.Weissmuller, J., Newman, R.C., Jin, H.J., Hodge, A.M., and Kysar, J.W.: Nanoporous metals by alloy corrosion: Formation and mechanical properties. MRS Bull. 34, 577 (2009).
3.Mameka, N., Markmann, J., and Weissmüller, J.: On the impact of capillarity for strength at the nanoscale. Nat. Commun. 8, 1976 (2017).
4.Mameka, N., Wang, K., Markmann, J., Lilleodden, E.T., and Weissmüller, J.: Nanoporous gold—Testing macro-scale samples to probe small-scale mechanical behavior. Mater. Res. Lett. 4, 27 (2016).
5.McCue, I., Ryan, S., Hemker, K., Xu, X.D., Li, N., Chen, M.W., and Erlebacher, J.: Size effects in the mechanical properties of bulk bicontinuous Ta/Cu nanocomposites made by liquid metal dealloying. Adv. Eng. Mater. 18, 46 (2016).
6.Miyazawa, N., Ishimoto, J., Hakamada, M., and Mabuchi, M.: Mechanical characterization of nanoporous Au modified with self-assembled monolayers. Appl. Phys. Lett. 109, 261905 (2016).
7.Roschning, B. and Huber, N.: Scaling laws of nanoporous gold under uniaxial compression: Effects of structural disorder on the solid fraction, elastic Poisson’s ratio, Young’s modulus and yield strength. J. Mech. Phys. Solids 92, 55 (2016).
8.Hodge, A.M., Hayes, J.R., Caro, J.A., Biener, J., and Hamza, A.V.: Characterization and mechanical behavior of nanoporous gold. Adv. Eng. Mater. 8, 853 (2006).
9.Volkert, C.A. and Lilleodden, E.T.: Size effects in the deformation of sub-micron Au columns. Philos. Mag. 86, 5567 (2006).
10.Volkert, C.A., Lilleodden, E.T., Kramer, D., and Weissmuller, J.: Approaching the theoretical strength in nanoporous Au. Appl. Phys. Lett. 89, 061920 (2006).
11.Ruestes, C.J., Farkas, D., Caro, A., and Bringa, E.M.: Hardening under compression in Au foams. Acta Mater. 108, 1 (2016).
12.Balk, T.J., Eberl, C., Sun, Y., Hemker, K.J., and Gianola, D.S.: Tensile and compressive microspecimen testing of bulk nanoporous gold. JOM 61, 26 (2009).
13.Hakamada, M. and Mabuchi, M.: Mechanical strength of nanoporous gold fabricated by dealloying. Scr. Mater. 56, 1003 (2007).
14.Hodge, A.M., Biener, J., Hayes, J.R., Bythrow, P.M., Volkert, C.A., and Hamza, A.V.: Scaling equation for yield strength of nanoporous open-cell foams. Acta Mater. 55, 1343 (2007).
15.Jin, H.J., Kramer, D., Ivanisenko, Y., and Weissmuller, J.: Macroscopically strong nanoporous Pt prepared by dealloying. Adv. Eng. Mater. 9, 849 (2007).
16.Mathur, A. and Erlebacher, J.: Size dependence of effective Young’s modulus of nanoporous gold. Appl. Phys. Lett. 90, 061910 (2007).
17.Liu, R. and Antoniou, A.: A relationship between the geometrical structure of a nanoporous metal foam and its modulus. Acta Mater. 61, 2390 (2013).
18.Sun, X-Y., Xu, G-K., Li, X., Feng, X-Q., and Gao, H.: Mechanical properties and scaling laws of nanoporous gold. J. Appl. Phys. 113, 023505 (2013).
19.Liu, L.Z., Ye, X.L., and Jin, H.J.: Interpreting anomalous low-strength and low-stiffness of nanoporous gold: Quantification of network connectivity. Acta Mater. 118, 77 (2016).
20.Liu, R., Gruber, J., Bhattacharyya, D., Tucker, G.J., and Antoniou, A.: Mechanical properties of nanocrystalline nanoporous platinum. Acta Mater. 103, 624 (2016).
21.Luhrs, L., Soyarslan, C., Markmann, J., Bargmann, S., and Weissmuller, J.: Elastic and plastic Poisson’s ratios of nanoporous gold. Scr. Mater. 110, 65 (2016).
22.Mangipudi, K.R., Epler, E., and Volkert, C.A.: Topology-dependent scaling laws for the stiffness and strength of nanoporous gold. Acta Mater. 119, 115 (2016).
23.Gibson, L.J. and Ashby, M.F.: Cellular Solids: Structure and Properties, 2nd ed. (Cambridge University Press, Cambridge, U.K., 1997).
24.Gibson, L.J. and Ashby, M.F.: The mechanics of three-dimensional cellular materials. Proc. R. Soc. London, Ser. A 382, 43 (1982).
25.Wu, B., Heidelberg, A., and Boland, J.J.: Mechanical properties of ultrahigh-strength gold nanowires. Nat. Mater. 4, 525 (2005).
26.Weinberger, C.R. and Cai, W.: Plasticity of metal nanowires. J. Mater. Chem. 22, 3277 (2012).
27.Liang, H., Upmanyu, M., and Huang, H.: Size-dependent elasticity of nanowires: Nonlinear effects. Phys. Rev. B 71, 241403 (2005).
28.Dou, R. and Derby, B.: Deformation mechanisms in gold nanowires and nanoporous gold. Philos. Mag. 91, 1070 (2011).
29.Diao, J.K., Gall, K., Dunn, M.L., and Zimmerman, J.A.: Atomistic simulations of the yielding of gold nanowires. Acta Mater. 54, 643 (2006).
30.Diao, J.K., Gall, K., and Dunn, M.L.: Atomistic simulation of the structure and elastic properties of gold nanowires. J. Mech. Phys. Solids 52, 1935 (2004).
31.Hyde, B., Espinosa, H.D., and Farkas, D.: An atomistic investigation of elastic and plastic properties of Au nanowires. JOM 57, 62 (2005).
32.Rodriguez-Nieva, J.F., Ruestes, C.J., Tang, Y., and Bringa, E.M.: Atomistic simulation of the mechanical properties of nanoporous gold. Acta Mater. 80, 67 (2014).
33.Crowson, D.A., Farkas, D., and Corcoran, S.G.: Geometric relaxation of nanoporous metals: The role of surface relaxation. Scr. Mater. 56, 919 (2007).
34.Crowson, D.A., Farkas, D., and Corcoran, S.G.: Mechanical stability of nanoporous metals with small ligament sizes. Scr. Mater. 61, 497 (2009).
35.Kolluri, K. and Demkowicz, M.J.: Coarsening by network restructuring in model nanoporous gold. Acta Mater. 59, 7645 (2011).
36.Ngo, B.N.D., Roschning, B., Albe, K., Weissmuller, J., and Markmann, J.: On the origin of the anomalous compliance of dealloying-derived nanoporous gold. Scr. Mater. 130, 74 (2017).
37.Ngô, B-N.D., Stukowski, A., Mameka, N., Markmann, J., Albe, K., and Weissmüller, J.: Anomalous compliance and early yielding of nanoporous gold. Acta Mater. 93, 144 (2015).
38.Biener, J., Hodge, A.M., Hayes, J.R., Volkert, C.A., Zepeda-Ruiz, L.A., Hamza, A.V., and Abraham, F.F.: Size effects on the mechanical behavior of nanoporous Au. Nano Lett. 6, 2379 (2006).
39.Farkas, D., Caro, A., Bringa, E., and Crowson, D.: Mechanical response of nanoporous gold. Acta Mater. 61, 3249 (2013).
40.Cahn, J.W. and Hilliard, J.E.: Free energy of a nonuniform system. III. Nucleation in a 2-component incompressible fluid. J. Chem. Phys. 31, 688 (1959).
41.Erlebacher, J., Aziz, M.J., Karma, A., Dimitrov, N., and Sieradzki, K.: Evolution of nanoporosity in dealloying. Nature 410, 450 (2001).
42.Plimpton, S.: Fast parallel algorithms for short-range molecular-dynamics. J. Comput. Phys. 117, 1 (1995).
43.Daw, M.S. and Baskes, M.I.: Embedded-atom method—Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443 (1984).
44.Foiles, S.M., Baskes, M.I., and Daw, M.S.: Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 33, 7983 (1986).
45.Farkas, D.: Atomistic simulations of metallic microstructures. Curr. Opin. Solid State Mater. Sci. 17, 284 (2013).
46.Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010).
47.Stukowski, A. and Albe, K.: Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Modell. Simul. Mater. Sci. Eng. 18, 085001 (2010).
48.Kelchner, C.L., Plimpton, S.J., and Hamilton, J.C.: Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B 58, 11085 (1998).
49.Stuckner, J., Frei, K., McCue, I., Demkowicz, M.J., and Murayama, M.: AQUAMI: An open source Python package and GUI for the automatic quantitative analysis of morphologically complex multiphase materials. Comput. Mater. Sci. 139, 320 (2017).
50.Badwe, N., Chen, X.Y., and Sieradzki, K.: Mechanical properties of nanoporous gold in tension. Acta Mater. 129, 251 (2017).
51.Field, J.S. and Swain, M.V.: Determining the mechanical properties of small volumes of material from submicrometer spherical indentations. J. Mater. Res. 10, 101 (1995).
52.Herbert, E.G., Pharr, G.M., Oliver, W.C., Lucas, B.N., and Hay, J.L.: On the measurement of stress–strain curves by spherical indentation. Thin Solid Films 398–399, 331 (2001).
53.Jin, H.J., Kurmanaeva, L., Schmauch, J., Rosner, H., Ivanisenko, Y., and Weissmuller, J.: Deforming nanoporous metal: Role of lattice coherency. Acta Mater. 57, 2665 (2009).
54.Nix, W.D.: Nanoscale gold pillars strengthened through dislocation starvation. Phys. Rev. B 73, 245410 (2006).
55.Kocks, U.F. and Mecking, H.: Physics and phenomenology of strain hardening: The FCC case. Prog. Mater. Sci. 48, 171 (2003).
56.Carroll, M.M. and Holt, A.C.: Static and dynamic pore—Collapse relations for ductile porous materials. J. Appl. Phys. 43, 1626 (1972).
57.Davila, L.P., Erhart, P., Bringa, E.M., Meyers, M.A., Lubarda, V.A., Schneider, M.S., Becker, R., and Kumar, M.: Atomistic modeling of shock-induced void collapse in copper. Appl. Phys. Lett. 86, 1619021 (2005).
58.Tang, Y., Bringa, E., Remington, B., and Meyers, M.: Growth and collapse of nanovoids in tantalum monocrystals. Acta Mater. 59, 1354 (2011).
59.Bulatov, V.V., Wolfer, W.G., and Kumar, M.: Shear impossibility: Comments on “Void growth by dislocation emission” and Void growth in metals: Atomistic calculations. Scr. Mater. 63, 144 (2010).
60.Torquato, S.: Random Heterogeneous Materials (Springer, New York, NY, 2002).
61.Schuh, C.A., Hufnagel, T.C., and Ramamurty, U.: Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 (2007).
62.Maaß, R. and Löffler, J.F.: Shear-band dynamics in metallic glasses. Adv. Funct. Mater. 25, 23532368 (2015).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed