Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-15T16:53:25.642Z Has data issue: false hasContentIssue false

Indentation variability of natural nanocomposite materials

Published online by Cambridge University Press:  31 January 2011

Michelle L. Oyen*
Affiliation:
Cambridge University, Engineering Department, Cambridge CB2 1PZ, United Kingdom
Ching-Chang Ko
Affiliation:
Orthodontics, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina 27599-7450
*
a)Address all correspondence to this author. e-mail: mlo29@cam.ac.uk
Get access

Abstract

Small-scale depth-sensing indentation (nanoindentation) is a popular technique for measuring the mechanical properties of a wide range of materials. Contact mechanics solutions used in data analysis are based on the indentation of a homogeneous half-space, but the experiments are frequently conducted on mineralized biological tissues—biocomposite materials with nanometer-scale features—such as bone and dentin. The current study examines the experimental indentation response of bone across orders of magnitude in contact dimension length-scale, from nanometers to micrometers. Scaling arguments are used to establish the need for nanoscale simulations of mineralized tissue indentation. A finite element model of an inhomogeneous contact problem is developed and used to interpret experimental indentation data on bone and dentin. Both experimental data and modeling results demonstrate a convergence in apparent elastic modulus at increasing contact length-scales. Models results are used to estimate a feature size associated with inhomogeneity of the indentation response; for experiments conducted here the characteristic feature size is found to be substantially larger for bone than for dentin, and in both cases larger than for individual nanometer-scale mineral platelets.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Sneddon, I.N.: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 1965CrossRefGoogle Scholar
2Doerner, M.F., Nix, W.D.: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1, 601 1986CrossRefGoogle Scholar
3Oliver, W.C., Pharr, G.M.: Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 1992CrossRefGoogle Scholar
4Field, J.S., Swain, M.V.: A simple predictive model for spherical indentation. J. Mater. Res. 8, 297 1993CrossRefGoogle Scholar
5Cuy, J.L., Mann, A.B., Livi, K.J., Teaford, M.F., Weihs, T.P.: Nanoindentation mapping of the mechanical properties of human molar tooth enamel. Arch. Oral Biol. 47, 281 2002CrossRefGoogle ScholarPubMed
6Tesch, W., Eidelman, N., Roschger, P., Goldenberg, F., Klaushofer, K., Fratzl, P.: Graded microstructure and mechanical properties of human crown dentin. Calcif. Tissue Int. 69, 147 2001CrossRefGoogle ScholarPubMed
7Ferguson, V.L., Bushby, A.J., Boyde, A.: Nanomechanical properties and mineral concentration in articular calcified cartilage and subchondral bone. J. Anat. 203, 191 2003CrossRefGoogle ScholarPubMed
8Rho, J-Y., Tsui, T.Y., Pharr, G.M.: Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials 18, 1325 1997CrossRefGoogle ScholarPubMed
9Chang, M.C., Ko, C.C., Liu, C.C., Douglas, W.H., DeLong, R., Seong, W-J., Hodges, J., An, K-N.: Elasticity of alveolar bone near dental implant–bone interfaces after one month’s healing. J. Biomech. 36, 1209 2003CrossRefGoogle ScholarPubMed
10Kinney, J.H., Balooch, M., Marshall, S.J., Marshall, G.W., Weihs, T.P.: Hardness and Young’s modulus of human peritubular and intertubular dentine. Arch. Oral Biol. 41, 9 1996CrossRefGoogle ScholarPubMed
11Angker, L., Nockolds, C., Swain, M.V., Kilpatrick, N.: Correlating the mechanical properties to the mineral content of carious dentine—A comparative study using an ultra-micro indentation system (UMIS) and SEM-BSE signals. Arch. Oral Biol. 49, 369 2004CrossRefGoogle Scholar
12Katz, J.L.: Hard tissue as a composite material. I. Bounds on the elastic behavior. J. Biomech. 4, 455 1971CrossRefGoogle ScholarPubMed
13Ager, J.W., Balooch, G., Ritchie, R.O.: Fracture, aging and disease in bone. J. Mater. Res. 21, 1878 2006CrossRefGoogle Scholar
14Herakovich, C.T.: Mechanics of Fibrous Composites Wiley New York 1997Google Scholar
15Hashin, Z., Shtrikman, S.: A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 11, 127 1963CrossRefGoogle Scholar
16Currey, J.D.: Bones: Structure and Mechanics Princeton University Press Princeton, NJ 2002CrossRefGoogle Scholar
17Oyen, M.L., Cook, R.F.: Load–displacement behavior during sharp indentation of viscous–elastic–plastic materials. J. Mater. Res. 18, 139 2003CrossRefGoogle Scholar
18An, K.N., Sun, Y.L., Luo, Z.P.: Flexibility of type I collagen and mechanical property of connective tissue. Biorheology 41, 239 2004Google ScholarPubMed
19Nieh, T.G., Jankowski, A.F., Koike, J.: Processing and characterization of hydroxyapatite coatings on titanium produced by magnetron sputtering. J. Mater. Res. 16, 3238 2001CrossRefGoogle Scholar
20King, R.B.: Elastic analysis of some punch problems for a layered medium. Int. J. Solids Struct. 23, 1657 1987CrossRefGoogle Scholar
21Saha, R., Nix, W.D.: Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater. 50, 23 2002CrossRefGoogle Scholar
22Johnson, K.L.: Contact Mechanics Cambridge University Press Cambridge, UK 1985CrossRefGoogle Scholar
23Zysset, P.K., Guo, X.E., Hoffler, C.E., Moore, K.E., Goldstein, S.A.: Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J. Biomech. 32, 1005 1999CrossRefGoogle ScholarPubMed
24Lakes, R.S.: Materials with structural hierarchy. Nature 361, 511 1993CrossRefGoogle Scholar
25Rosen, V. Benezra, Hobbs, L.W., Spector, M.: The ultrastructure of anorganic bovine bone and selected synthetic hyroxyapatites used as bone graft substitute materials. Biomaterials 23, 921 2002CrossRefGoogle ScholarPubMed
26Hellmich, C., Ulm, F-J.: Are mineralized tissues open crystal foams reinforced by crosslinked collagen?—Some energy arguments. J. Biomech. 35, 1199 2002CrossRefGoogle ScholarPubMed
27Gray, H.: Anatomy: Descriptive and Surgical, original edition, 1901 Running Press edition, Philadelphia, PA 1974Google Scholar
28Kotha, S.P., Guzelsu, N.: Modeling the tensile mechanical behavior of bone along the longitudinal direction. J. Theor. Biol. 219, 269 2002CrossRefGoogle ScholarPubMed
29Jager, I., Fratzl, P.: Mineralized collagen fibrils: A mechanical model with staggered arrangement of mineral particles. Biophys. J. 79, 1737 2000CrossRefGoogle ScholarPubMed
30Gao, H., Baohua, J., Jager, I.L., Arzt, E., Fratzl, P.: Materials become insensitive to flaws at nanoscale: Lessons from nature. Proc. Natl. Acad. Sci. U.S.A. 100, 5597 2003CrossRefGoogle ScholarPubMed
31Swadener, J.G., Rho, J-Y., Pharr, G.M.: Effects of anisotropy on elastic moduli measured by nanoindentation in human tibial cortical bone. J. Biomed. Mater. Res. 57, 108 20013.0.CO;2-6>CrossRefGoogle ScholarPubMed
32Bembey, A.K., Bushby, A.J., Boyde, A., Ferguson, V.L., Oyen, M.L.: Hydration effects on bone micro-mechanical properties. J. Mater. Res. 21, 1962 2006CrossRefGoogle Scholar
33Bembey, A.K., Oyen, M.L., Bushby, A.J., Boyde, A.: Viscoelastic properties of bone as a function of hydration state determined by nanoindentation. Philos. Mag. 86, 5691 2006CrossRefGoogle Scholar
34Hoffler, C.E., Moore, K.E., Kozloff, K., Zysset, P.K., Brown, M.B., Goldstein, S.A.: Heterogeneity of bone lamellar-level elastic moduli. Bone 26, 603 2000CrossRefGoogle ScholarPubMed
35Oyen, M.L.: Nanoindentation hardness measurements of mineralized tissues. J. Biomech. 39, 2699 2006CrossRefGoogle ScholarPubMed
36Oyen, M.L., Ko, C-C.: Examination of local variations in viscous, elastic, and plastic indentation responses in healing bone. J. Mater. Sci.: Mater. Med. 18, 623 2007Google ScholarPubMed
37Constantinides, G., Chandran, K.S. Ravi, Ulm, F.J., Van Vliet, K.J.: Grid indentation analysis of composite microstructure and mechanics: Principles and validation. Mater. Sci. Eng., A 430, 189 2006CrossRefGoogle Scholar