Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-21T05:09:02.685Z Has data issue: false hasContentIssue false

Infiltration of C/SiC composites with silica sol-gel solutions: Part I. Infiltration by dipping

Published online by Cambridge University Press:  31 January 2011

Mario Aparicio
Affiliation:
Instituto de Cerámica y Vidrio (CSIC), E-28500 Arganda del Rey, Madrid, Spain
Alicia Durán
Affiliation:
Instituto de Cerámica y Vidrio (CSIC), E-28500 Arganda del Rey, Madrid, Spain
Get access

Abstract

Oxidation resistance of ceramic matrix composites (CMC) of SiC reinforced with C fibers (C/SiC) can be improved by filling the residual porosity. The aim of this work was to design and analyze a dipping infiltration process under ambient conditions (1 atm pressure and room temperature) with silica sol-gel solutions prepared from tetraethyl orthosilicate. Different substrates and solutions have been studied. Thermal treatments, i.e., curing or sintering between infiltrations, increase the efficiency of the process since the densification of infiltrated silica opens up the remaining porosity. Increasing viscosity and/or concentration of the solution lead to greater weight gains. Weight gains are higher in the initial stages of the process because larger diameter porosity remains unfilled. As the process advances, the average pore size decreases, and only the lower viscosity solution can enter the residual porosity.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Mun, J.K., Park, C.O., Yoon, B.I., Kim, K.S., and Joo, H.J., J. Mater. Sci. 30, 1529 (1995).CrossRefGoogle Scholar
2.Ehrburger, P., Baranne, P., and Lahaye, J., Carbon 24, 495 (1986).Google Scholar
3.Capdepuy, B., Ind. Ceram. (Paris) 845, 20 (1990).Google Scholar
4.Gee, S.M. and Little, J.A., J. Mater. Sci. 26, 1093 (1991).CrossRefGoogle Scholar
5.Ogura, Y., Kondo, M., and Morimoto, T., in Proceedings of the 10th International Conference on Composite Materials, Whistler, British Columbia, Canada, Aug 14–18, 1995, edited by Poursartip, A. and Street, K. (Woodhead Publishing Limited, 1995), Vol. IV, p. 767.Google Scholar
6.Rodríguez-Viejo, J., Sibieude, F., and Clavaguera-Mora, M.T., J. Eur. Ceram. Soc. 13, 167 (1994).CrossRefGoogle Scholar
7.Rodríguez-Viejo, J., Sibieude, F., and Clavaguera-Mora, M.T., J. Eur. Ceram. Soc. 13, 177 (1994).Google Scholar
8.Balat, M.J.H, J. Eur. Ceram. Soc. 16, 55 (1996).Google Scholar
9.Haug, T., Ostertag, R., and Schäfer, W., European SAMPLE 1992 International Conference May 11–13, Hamburg, Germany.Google Scholar
10.Goujard, S., Vandenbulcke, L., and Tawil, H., J. Mater. Sci. 29, 6212 (1994).Google Scholar
11.Rousseau, G. and Pastureau, N., French Patent No. FR 2611198 (25 Feb 1987).Google Scholar
12.Villegas, M.A., Aparicio, M., and Durán, A., J. Non-Cryst. Solids 218, 146 (1997).Google Scholar
13.Aparicio, M., Villegas, M.A., and Durán, A., Bol. Soc. Esp. Ceram. Vidrio 36, 119 (1997).Google Scholar
14.Christin, F., Naslain, R., and Bernard, C., in Proceedings of the 7th International Conference on Chemical Vapor Deposition, edited by Sedwick, T.O. and Lydtin, H. (The Electrochemical Society, Princeton, NJ, 1979), p. 499.Google Scholar
15.Naslain, R., Hagenmuller, P., Christin, F., Héraud, L., and Choury, J.J., ICCM-3 Advances in Composite Materials, edited by Bunsell, A.R., Bathias, C., Martrenchar, A., Menkes, D., and Verchery, G. (Pergamon Press, New York, 1980), Vol. 2, p. 1084.CrossRefGoogle Scholar
16.Héraud, L., Christin, F., Naslain, R., and Hagenmuller, P., in Proceedings of the 7th International Conference on Chemical Vapor Deposition, edited by Blocher, J.M.et al. (The Electrochemical Society, Pennington, NJ, 1981), p. 782.Google Scholar
17.Shuford, D.M., Patent, U.S. No. US 4 471 023 (11 Sep 1984).Google Scholar
18.Cavalier, J.C. and Nale, A., European Patent No. EP 0 375 537 A1 (19 Dec 1989).Google Scholar
19.Chen, Y. and Chung, D.D.L, J. Mater. Sci. 31, 407 (1996).CrossRefGoogle Scholar
20.Fahrenholtz, W.G., Ewsuk, K.G., Ellerby, D.T., and Loehman, R.E., J. Am. Ceram. Soc. 79, 2497 (1996).Google Scholar
21.Hillig, W.B., Am. Ceram. Soc. Bull. 73, 56 (1994).Google Scholar
22.Glass, S.J. and Green, D.J., in Ceramic Powder Science II, Ceramic Transaction Vol 1B, edited by Messing, G.L., Fuller, E.R., and Hausner, H. (American Ceramic Society, Westerville, OH, 1988).Google Scholar
23.Hannache, H., Quenisset, J.M., Naslain, R., and Heraud, L., J. Mater. Sci. 19, 202 (1984).Google Scholar
24.Sugiyama, K. and Yamamoto, E., J. Mater. Sci. 24, 3756 (1989).Google Scholar
25.Araki, H., Noda, T., Abe, F., and Suzuki, H., J. Mater. Sci. Lett. 11, 1582 (1992).CrossRefGoogle Scholar
26.Sygiyama, K. and Yoshida, K., J. Mater. Sci. 30, 5125 (1995).Google Scholar
27.Maple, B.R. and Green, D.J., J. Am. Ceram. Soc. 72, 2043 (1989).CrossRefGoogle Scholar
28.Maple, B.R. and Green, D.J., J. Am. Ceram. Soc. 71, C471 (1988).Google Scholar
29.Schlichting, J. and Neumann, S., J. Non-Cryst. Solids 48, 185 (1982).CrossRefGoogle Scholar
30.Vogel, W.D. and Spelz, U., Ceramic Processing Science and Technology, edited by Hausner, H., Messing, G.L., and Hirano, S.I. (Ceram. Trans. 51, Westerville, OH, 1995), p. 255.Google Scholar
31.Guglielmi, M., Brusatin, G., and Tombolan, N., Riv. Staz. Sper. Vetro Sup. 23, 495 (1993).Google Scholar
32.Defay, R., Prigogine, I., Bellemans, A., and Everett, D.H., in Surface Tension and Adsorption (Longmans, Green & Co, London, United Kingdom, 1966), p. 1.Google Scholar
33.Delannay, F., Froyen, L., and Deruyttere, A., J. Mater. Sci. 22, 1 (1987).Google Scholar
34.Semlak, K.A. and Rhines, F.N., Trans. Met. Soc. AIME 212, 325 (1958).Google Scholar