Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-15T04:08:54.221Z Has data issue: false hasContentIssue false

Influence of boron content on the microstructure of sintered Al62.5−xCu25.3Fe12.2Bx alloys (x = 0, 3, 5)

Published online by Cambridge University Press:  01 October 2004

V. Brien*
Affiliation:
Laboratoire de Science et Génie des Matériaux et de Métallurgie, UMR 7584, CNRS-INPL-UHP, Parc de Saurupt, Ecole Nationale Supérieure des Mines de Nancy, 54042 Nancy Cedex, France
V. Khare
Affiliation:
Laboratoire de Science et Génie des Matériaux et de Métallurgie, UMR 7584, CNRS-INPL-UHP, Parc de Saurupt, Ecole Nationale Supérieure des Mines de Nancy, 54042 Nancy Cedex, France
F. Herbst
Affiliation:
Laboratoire de Sciences et Génie des Surfaces, UMR 7570, CNRS-INPL-EDF, Parc de Saurupt, ENSMN, 54042 Nancy Cedex, France
P. Weisbecker
Affiliation:
Laboratoire de Science et Génie des Matériaux et de Métallurgie, UMR 7584, CNRS-INPL-UHP, Parc de Saurupt, ENSMN, 54042 Nancy Cedex, France
J-B. Ledeuil
Affiliation:
Laboratoire de Science et Génie des Matériaux et de Métallurgie, UMR 7584, CNRS-INPL-UHP, Parc de Saurupt, ENSMN, 54042 Nancy Cedex, France
M.C. de Weerd
Affiliation:
Laboratoire de Science et Génie des Matériaux et de Métallurgie, UMR 7584, CNRS-INPL-UHP, Parc de Saurupt, ENSMN, 54042 Nancy Cedex, France
F. Machizaud
Affiliation:
Laboratoire de Science et Génie des Matériaux et de Métallurgie, UMR 7584, CNRS-INPL-UHP, Parc de Saurupt, ENSMN, 54042 Nancy Cedex, France
J-M. Dubois
Affiliation:
Laboratoire de Science et Génie des Matériaux et de Métallurgie, UMR 7584, CNRS-INPL-UHP, Parc de Saurupt, ENSMN, 54042 Nancy Cedex, France
*
a) Address all correspondence to this author. e-mail: valerie.brien@lpmi.uhp-nancy.fr
Get access

Abstract

Microstructures and morphological features of a series of sintered quasicrystalline Al62.5−xCu25.3Fe12.2Bx alloys, with x ranging from 0 to 5 at.% were studied using x-ray diffraction, scanning electron microscopy, x-ray mapping, and electron probe microanalysis. Electron backscattering diffraction (EBSD) was also used to get information about the structures of some phases and identify the crystalline relationship in-between phases. Increasing x results in the change of the nature of extra phases. These secondary phases are all less than 1% in volume of the total matter except for the β phase at 5% of boron. Whatever the percentage of boron considered, boron seems to concentrate essentially in the parasite phases confirming doubts found in literature about the solubility of boron inside the face-centered-icosahedral Al–Cu–Fe phase. No special crystallographic relationship in between the tested phases could be spotted. EBSD is thus also confirmed as an excellent technique to get quasicrystalline grains orientations.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Shechtman, D., Blech, I., Gratias, D. and Cahn, J-W.: Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53 20 1951 (1984).CrossRefGoogle Scholar
2Levine, D. and Steinhardt, P.J.: Quasicrystals: A new class of ordered structures. Phys. Rev. Lett. 53, 2477 (1984).CrossRefGoogle Scholar
3Levine, D. and Steinhardt, P.J.: Quasicrystals. I: Definition and structure. Phys. Rev. B 34, 596 (1986).CrossRefGoogle ScholarPubMed
4Klein, T., Berger, C., Mayou, D. and Cyrot-Lackman, F.: Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 66, 2907 (1991).CrossRefGoogle Scholar
5Bresson, L. and Gratias, D.: Plastic deformation in AlCuFe icosahedral phase. J. Non-Cryst. Solids 153–154, 468 (1993).CrossRefGoogle Scholar
6Yokohama, Y., Miura, T., Tsai, A.P., Inoue, A. and Masumoto, T.: Mater. Trans. JIM 33, 97 (1992).CrossRefGoogle Scholar
7Mayou, D., Berger, C., Cyrot-Lackman, F., Klein, T. and Lanco, P.: Evidence for unconventional electronic transport in quasicrystals. Phys. Rev. Lett. 70, 3915 (1993).CrossRefGoogle ScholarPubMed
8Janot, C.: Quasicrystals, A Primer, 2nd ed. (Oxford Science Publications, Oxford University Press, Oxford, U.K., 1994).Google Scholar
9Berger, C. In Lectures on Quasicrystals 1994, edited by Hippert, F. and Gratias, D., (Les Editions de Physique, Les Ulis, 1994).Google Scholar
10VonStebut, J.Strobel, C. and Dubois:, J-M. Friction response and brittleness of polycrystalline Al–Cu–Fe icosahedral quasicrystals. In 5th International Conference on Quasicrystals (ICQ5), edited by Janot, C. and Mosseri, R. (World Scientific, Singapore, 1995).Google Scholar
11Chang, S.S.L., Chin, W.B., Zhang, C.M., Jenks, C.J. and Thiel, P.A.: Oxygen adsorption on a single-grain, quasicrystal surface. Surf. Sci. 337, 135 (1995).CrossRefGoogle Scholar
12Poon, S.J.Pierce, F.S.Guo, Q. and Volkov:, P. Optical conductivity of Al–based quasicrystals across metAl–insulator transition, in 5th International Conference on Quasicrystals (ICQ5), edited by Janot, C. and Mosseri, R. (World Scientific, Singapore, 1995).Google Scholar
13Dubois, J-M.Plaindoux, P.Belin-Ferré, E.Tamura, N. and Sordelet, D.J.: In Proceedings of the 6th International Conference on Quasicrystals (1997), edited by Takeuchi, S. and Fujiwara, T. (World Scientific, Singapore, 1998), p. 1267.Google Scholar
14Gavatz, M.Rouxel, D.Claudel, D.Pigeat, P.Weber, B. and Dubois, J-M.: Emissivity and oxidation of icosahedral Al62Cu25.5Fe12.5. In Proceedings of the 6th International Conference on Quasicrystals, edited by Takeuchi, S. and Fujiwara, T.World Scientific, Singapore 1267 (1998).Google Scholar
15Koster, U., Liu, W., Liebertz, H. and Michel, M.: Mechanical properties of quasicrystalline and crystalline phases in Al–Cu–Fe alloys. J. Non-Cryst. Solids. 416, 153 (1993).Google Scholar
16Sainfort, P. and Dubost, B. Micro-mechanical properties of bulk crystalline and quasicrystalline AlCuLi compounds. In Quasicrystalline Materials, edited by Janot, C. and Dubois, J.M. (World Scientific, Singapore, 1988), p. 361.Google Scholar
17Giacometti, E., Baluc, N., Bonneville, J. and Rabier, J.: Microindentation of Al–Cu–Fe icosahedral quasicrystal. Scripta Mater. 41, 989 (1999).CrossRefGoogle Scholar
18Shield, J.E., Campbell, J.A. and Sordelet, D.J.: Mechanical properties of Al–Cu–Fe-based quasicrystalline coatings. J. Mater. Sci. Lett. 16, 2019 (1997).CrossRefGoogle Scholar
19Sordelet, D.J., Bloomer, T.A., Kramer, M.J. and Unal, O.: Effects of boron on the solidification structure of an Al–Cu–Fe alloy. J. Mater. Sci. Lett. 1 11, (1996).Google Scholar
20Huang, S.Y. and Shield, J.E.: Effect of boron additions on Al–Cu–Fe icosahedral quasicrystals. Philosophical Magazine 75, 157 (1997).CrossRefGoogle Scholar
21Calvayrac, Y. et al. (private communication, 1998).Google Scholar
22Cheung, Y.L., Chan, K.C. and Zhu, Y.H.: Characterization of the icosahedral phase in as-cast quasicrystalline Al65Cu20Fe15 alloy. Mater. Char . 47, 299 (2001).CrossRefGoogle Scholar