Skip to main content

Influence of Deposition Parameters on the Composition and Structure of Reactively Sputtered Nanocomposite TaC/a-C:H Thin Films

  • Ryan D. Evans (a1), Jane Y. Howe (a2), James Bentley (a2), Gary L. Doll (a3) and Jeffrey T. Glass (a4)...

The properties of nanocomposite tantalum carbide/amorphous hydrocarbon (TaC/a-C:H) thin films depend closely on reactive magnetron sputtering deposition process conditions. The chemical composition and structure trends for TaC/a-C:H films were obtained as a function of three deposition parameters: acetylene flow rate, applied direct current (dc) bias voltage, and substrate carousel rotation rate. Films were deposited according to a 23 factorial experimental design to enable multiple linear regression modeling of property trends. The Ta/C atomic ratio, hydrogen content, total film thickness, TaC crystallite size, and Raman spectra were statistically dependent on acetylene flow rate, applied dc bias voltage, or both. Transmission electron microscopy revealed a nanometer-scale lamellar film structure, the periodicity of which was affected mostly by substrate carousel rotation rate. The empirical property trends were interpreted with respect to hypothesized growth mechanisms that incorporate elements of physical vapor deposition and plasma-enhanced chemical vapor deposition.

Corresponding author
a) Address all correspondence to this author. e-mail:
Hide All
1Doll G.L. and Osborn B.K.: Engineering surfaces of precision steel components, in 44th Annual Technical Conference Proceedings (Society of Vaccum Coaters, Philadelphia, PA, Apr. 21-26 2001).
2Evans R.D., Cooke E.P., Ribaudo C.R. and Doll G.L. Nanocomposite tribological coatings for rolling element bearings, in Surface Engineering 2002—Synthesis, Characterization and Applications, edited by Kumar A., Meng W.J., Cheng Y.T., Zabinski J.S., Doll G.L., and S. Veprek. (Mater. Res. Soc. Symp. 750, Warrendale, PA, 2003), Y4.8 p. 407.
3Sjostrom H. and Wikstrom V.: Diamond-like carbon coatings in rolling contacts. Proc. Instn. Mech. Engrs. Part J. 215, 545 (2001).
4Dimigen H. and Hubsch H.: Applying low-friction wear-resistant thin solid films by physical vapour deposition. Philips Tech. Rev. 41, 186 (1983).
5Dimigen H. and Hubsch H.: Carbon-containing sliding layer. U.S. Patent No. 4 525 417 (June 25, 1985).
6Dimigen H., Hubsch H. and Memming R.: Tribological and electrical properties of metal-containing hydrogenated carbon films. Appl. Phys. Lett. 50, 1056 (1987).
7Bergmann E. and Vogel J.: Tribological properties of metal/carbon coatings. J. Vac. Sci. Technol. A 4, 2867 (1986).
8Bergmann E. and Vogel J.: Influence of composition and process parameters on the internal stress of the carbides of tungsten, chromium, and titanium. J. Vac. Sci. Technol. A 5, 70 (1987).
9Klages C.P. and Memming R.: Microstructure and physical properties of metal-containing hydrogenated carbon films. Mater. Sci. Forum 52, 609 (1989).
10Benndorf C., Grischke M., Koeberle H., Memming R., Brauer A. and Thieme F.: Identification of carbon and tantalum chemical states in metal-doped a-C:H films. Surf. Coat. Technol. 36, 171 (1988).
11van Duyn W. and van Lochem B.: Chemical and mechanical characterization of WC:H amorphous layers. Thin Solid Films 181, 497 (1989).
12Grischke M., Bewilogua K. and Dimigen H.: Preparation, properties and structure of metal containing amorphous hydrogenated carbon films. Mater. Manuf. Process. 8, 407 (1993).
13Bewilogua K. and Dimigen H.: Preparation of W-C:H coatings by reactive magnetron sputtering. Surf. Coat. Technol. 61, 144 (1993).
14Sjostrom H., Hultman L., Sundgren J.E. and Wallenberg L.R.: Microstructure of amorphous C:H and metal-containing C:H films deposited on steel substrates. Thin Solid Films 232, 169 (1993).
15Meng W.J., Curtis T.J., Rehn L.E. and Baldo P.M.: Plasma-assisted deposition and characterization of Ti-containing diamondlike-carbon coatings. J. Appl. Phys. 83, 6076 (1998).
16Meng W.J. and Gillispie B.A.: Mechanical properties of Ti-containing and W-containing diamond-like carbon coatings. J. Appl. Phys. 84, 4314 (1998).
17Voevodin A.A., O’Neill J.P. and Zabinski J.S.: Tribological performance and tribochemistry of nanocrystalline WC/amorphous diamond-like carbon composites. Thin Solid Films 342, 194 (1999).
18Schiffmann K.I., Fryda M., Goerigk G., Lauer R., Hinze P. and Bulack A.: Sizes and distances of metal clusters in Au-, Pt-, W-, and Fe-containing diamond-like carbon hard coatings: A comparative study by small angle x-ray scattering, wide angle x-ray diffraction, transmission electron microscopy and scanning tunnelling microscopy. Thin Solid Films 347, 60 (1999).
19Villiger P., Sprechter Ch. and Peters J.A.: Parameter optimization of Ti-DLC coatings using statistically based methods. Surf. Coat. Technol. 116-119, 585 (1999).
20Hakansson G., Petrov I. and Sundgren J.E.: Growth of TaC thin films by reactive direct current magnetron sputtering: Composition and structure. J. Vac. Sci. Technol. A 8, 3769 (1990).
21Gerstenberg K.W. and Grischke M.: Thermal gas evolution studies on a-C:H:Ta films. J. Appl. Phys. 69, 736 (1991).
22Palicki D.P. and Matthews A. Recent developments in magnetron sputtering systems. Finishing (Nov. 1993), p. 36.
23Teer D.G.: Magnetron sputter ion plating. U.S. Patent No. 5 556 519 (September 17, 1996).
24Brande P.V., Lucas S., Winand R., Renard L. and Weymeersch A.: Study of the formation of a carbon layer on a sputtering target during magnetron-enhanced reactive sputtering. Surf. Coat. Technol. 61, 151 (1993).
25Safi I.: Recent aspects concerning DC reactive magnetron sputtering of thin films: a review. Surf. Coat. Technol. 127, 203 (2000).
26Montgomery D.G.: Design and Analysis of Experiments, 5th ed. (John Wiley & Sons, New York, 2001).
27Ferrari A.C. and Robertson J.: Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095 (2000).
28Gruzalski G.R. and Zehner D.M.: Defect states in substoichiometric tantalum carbide. Phys. Rev. B 34, 3841 (1986).
29X-ray NIST photoelectron spectroscopy database, v. 3.4 (2003).
30Rempel A.A. and Sinelnichenko A.K.: X-ray photoelectron spectra of nonstoichiometric tantalum carbide. Phys. Metals 11, 352 (1992).
31Angus J.C. and Jansen F.: Dense “diamondlike” hydrocarbons as random covalent networks. J. Vac. Sci. Technol. A 6, 1778 (1988).
32Klug H.P. and Alexander L.E.: X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed. (John Wiley & Sons, New York, NY, 1974).
33Logothetidis S., Meletis E.I. and Kourouklis G.: New approach in the monitoring and characterization of titanium nitride thin films. J. Mater. Res. 14, 436 (1999).
34Robertson J.: Diamond-like amorphous carbon. Mater. Sci. Eng. R. 37, 129 (2002).
35Tamor M.A. and Vassell W.C.: Raman “fingerprinting” of amorphous carbon films. J. Appl. Phys. 76, 3823 (1994).
36Adamopoulos G., Robertson J., Morrison N.A. and Godet C.: Hydrogen content estimation of hydrogenated amorphous carbon by visible Raman spectroscopy. J. Appl. Phys. 96, 6348 (2004).
37Hofmann D., Schuessler H., Bewilogua K., Hubsch H. and Lemke J.: Plasma-booster-assisted hydrogenated W-C coatings. Surf. Coat. Technol. 73, 137 (1995).
38Bewilogua K., Cooper C.V., Specht C., Schroder J., Wittorf R. and Grischke M.: Erratum to: “Effect of target material on deposition and properties of metal-containing DLC (Me-DLC) coatings.” Surf. Coat. Technol. 132, 275 (2000).
39Park S.J., Lee K.R., Ko D.H. and Eun K.Y.: Microstructure and mechanical properties of WC-C nanocomposite films. Diamond Relat. Mater. 11, 1747 (2002).
40Hans M., Buchel R., Grischke M., Hobi R. and Zach M.: High-volume PVD coating of precision components of large volumes at low process costs. Surf. Coat. Technol. 123, 288 (2000).
41Kulikovsky V.Y., Fendrych F., Jastrabik L. and Chvostova D.: Study of formation and some properties of Ti-C:H films prepared by d.c. magnetron sputtering. Surf. Coat. Technol. 91, 122 (1997).
42Shi B. and Meng W.J.: Intrinsic stresses and mechanical properties of Ti-containing hydrocarbon coatings. J. Appl. Phys. 94, 186 (2003).
43Wagner W., Rauch F. and Grischke M.: Stoichiometry of a-C:H(Ta) films determined by means of RBS and the 15N technique. Nuc. Inst. Meth. Phys. Res. 111, 111 (1996).
44Meng W.J., Meletis E.I., Rehn L.E. and Baldo P.M.: Inductively coupled plasma assisted deposition and mechanical properties of metal-free and Ti-containing hydrocarbon coatings. J. Appl. Phys. 87, 2840 (2000).
45Meng W.J., Tittsworth R.C. and Rehn L.E.: Mechanical properties and microstructure of TiC/amorphous hydrocarbon nanocomposite coatings. Thin Solid Films 377, 222 (2000).
46Meng W.J., Tittsworth R.C., Jiang J.C., Feng B., Cao D.M., Winkler K. and Palshin V.: Ti atomic bonding environment in Ti-containing hydrocarbon coatings. J. Appl. Phys. 88, 2415 (2000).
47Czyzniewski A.: Deposition and some properties of nanocrystalline WC and nanocomposite WC/a-C:H coatings. Thin Solid Films 433, 180 (2003).
48Strondl C., van der Kolk G.J., Hurkmans T., Fleischer W., Trinh T., Carvalho N.M. and de Hosson J.Th.M.: Properties and characterization of multilayers of carbides and diamond-like carbon. Surf. Coat. Technol. 142, 707 (2001).
49Zehnder T. and Patscheider J.: Nanocomposite TiC/a-C:H hard coatings deposited by reactive PVD. Surf. Coat. Technol. 133, 138 (2000).
50Zehnder T., Schwaller P., Munnik F., Mikhailov S. and Patscheider J.: Nanostructural and mechanical properties of nanocomposite nc-TiC/a-C:H films deposited by reactive unbalanced magnetron sputtering. J. Appl. Phys. 95, 4327 (2004).
51Strondl C., Carvalho N.M., De Hosson J.Th.M. and van der Kolk G.J.: Investigation on the formation of tungsten carbide in tungsten-containing diamond like carbon coatings. Surf. Coat. Technol. 162, 288 (2003).
52Smith D.L.: Thin-Film Deposition: Principles and Practice (McGraw Hill, Boston, MA, 1995) pp. 372.
53Venables J.A., Spiller G.D.T. and Hanbucken M.: Nucleation and growth of thin films. Rep. Prog. Phys. 47, 399 (1984).
54Angus J.C. and Hayman C.C.: Low-pressure, metastable growth of diamond and diamondlike phases. Science 241, 913 (1988).
55Cuomo J.J., Pappas D.L., Bruley J., Doyle J.P. and Saenger K.L.: Vapor deposition processes for amorphous carbon films with sp 3 fractions approaching diamond. J. Appl. Phys. 70, 1706 (1991).
56Lifshitz Y., Kasi S.R., Rabalais J.W. and Eckstein W.: Subplantation model for film growth from hyperthermal species. Phys. Rev. B 41, 10468 (1990).
57Robertson J.: Deposition mechanisms for promoting sp 3 bonding in diamond-like carbon. Diamond Relat. Mater. 2, 984 (1993).
58Robertson J.: The deposition mechanism of diamond-like a-C and a-C:H. Diamond Relat. Mater. 3, 361 (1994).
59Grill A., Meyerson B.S., Patel V.V., Reimer J.A. and Petrich M.A.: Inhomogeneous carbon bonding in hydrogenated amorphous carbon films. J. Appl. Phys. 61, 2874 (1987).
60von Keudell A., Meier M. and Hopf C.: Growth mechanism of amorphous hydrogenated carbon. Diamond Relat. Mater. 11, 969 (2002).
61von Keudell A., Schwarz-Selinger T. and Jacob W.: Simultaneous interaction of methyl radicals and atomic hydrogen with amorphous hydrogenated carbon films. J. Appl. Phys. 89, 2979 (2001).
62Ziegler J.F.: The Stopping and Range of Ions in Solids (Pergamon, New York, NY, 1985).
63Angus J.C.: Empirical categorization and naming of “diamond-like” carbon films. Thin Solid Films 142, 145 (1986).
64Windischmann H.: An intrinsic stress scaling law for polycrystalline thin films prepared by ion beam sputtering. J. Appl. Phys. 62, 1800 (1987).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 26 *
Loading metrics...

Abstract views

Total abstract views: 137 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th January 2018. This data will be updated every 24 hours.