Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T23:20:33.720Z Has data issue: false hasContentIssue false

Influence of nitrogen implantation on the properties of Ti and substoichiometric TiNx films deposited on high speed steel

Published online by Cambridge University Press:  31 January 2011

M. T. Rodrigo
Affiliation:
Universidad Autónoma de Madrid, 28049 Madrid, Spain
C. Jiménez
Affiliation:
Universidad Autónoma de Madrid, 28049 Madrid, Spain
L. Váquez
Affiliation:
Instituto Ciencia de Materiales, C.S.I.C., 28049 Madrid, Spain
F. Alonso
Affiliation:
INASMET-Camino de Portuetxe, 12-20009 San Sebastián, Spain
M. Fernández
Affiliation:
Instituto Ciencia de Materiales, C.S.I.C., 28049 Madrid, Spain
J. M. Martínez-Duart
Affiliation:
Universidad Autónoma de Madrid, 28049 Madrid, Spain
Get access

Abstract

Ti and TiNx (x < 1) thin films have been deposited on high speed steel (HSS) substrates by reactive sputtering and then N+ implanted. The increase of the N/Ti ratio of the films during deposition is related to a decrease in their roughness, and N+ implantation produces another additional slight decrease of the roughness. The hardness of samples increases with the nitrogen content in the as-deposited samples; nevertheless, N+-implanted Ti coatings show lower values of hardness than reactive sputtered TiNx films. α–Ti, ε–Ti2N, and δ–TiN phases were identified by grazing x-ray diffraction.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Dion, I., Baquey, C., Haulik, P., and Montes, J. R., Int. J. Artif. Organs. 16 (7), 545550 (1993).CrossRefGoogle Scholar
2.Chang, T-S., Wang, W-C., Wang, L-P., Hwang, J-C., and Huang, F-S., J. Appl. Phys. 75, 7847 (1994).CrossRefGoogle Scholar
3.Deng, J. and Braun, M., Surf. Coat. Technol. 70, 4956 (1994).CrossRefGoogle Scholar
4.Höhl, F., Stock, H-R., and Mayr, P., Surf. Coat. Technol. 54/55, 160166 (1992).CrossRefGoogle Scholar
5.Coatings Tribology: Properties, Technique and Applications in Surface Engineering, Tribology Series, Vol. 28, edited by Holmberg, K. and Matthews, A. (Elsevier, Amsterdam, The Netherlands, 1994).Google Scholar
6.Huang, C-T. and Duh, J-G., Vacuum 46 (12), 14651472 (1995).CrossRefGoogle Scholar
7.Dawson, P. T. and Tzatzov, K. K., Surf. Sci. 149, 105118 (1985).CrossRefGoogle Scholar
8.Oliver, W. C. and Pharr, G. M., J. Mater. Sci. 7 (6), 15641583 (1992).Google Scholar
9.Ohring, M., The Materials Science of Thin Films (Academic Press, New York, 1992).Google Scholar
10.Wittling, M., Bendavid, A., Martin, P. J., and Swain, M. V., Thin Solid Films 270, 283288 (1995).CrossRefGoogle Scholar
11.O'Hern, M. E., Parrish, R. H., and Oliver, W. C., Thin Solid Films 181, 357363 (1989).CrossRefGoogle Scholar
12.Sundgren, J-E., Johansson, B-O., Karlsoon, S-E., and Hentzell, H. T. G., Thin Solid Films 105, 367384 (1983).CrossRefGoogle Scholar
13.Pivin, J. C., Pons, F., Takadoum, J., Pollock, H. M., and Farges, G., J. Mater. Sci. 22, 10871096 (1987).CrossRefGoogle Scholar
14.Delera, M., Proceedings Int. Ion Engineering Congress, Kyoto, Japan (1980), pp. 13131326.Google Scholar
15.Van Stappen, M., De Bruyn, K., Quaeyhaegens, C., Stals, L., and Poulek, V., Surf. Coat. Technol. 74–75, 143146 (1995).CrossRefGoogle Scholar