Skip to main content

Influence of rhenium on γ′-strengthened cobalt-base superalloys

  • Markus Kolb (a1), Christopher H. Zenk (a1), Anna Kirzinger (a1), Ivan Povstugar (a2), Dierk Raabe (a2), Steffen Neumeier (a1) and Mathias Göken (a1)...

The element Re is known to be a very potent strengthener concerning the creep properties of Ni-base superalloys. In this paper the influence of Re on the properties of new γ′-strengthened Co-base superalloys is addressed. Atom probe tomography reveals that Re partitions preferentially to the γ phase, but not as pronounced as in ni-base superalloys. Nanoindentation and micro-pillar compression tests of the γ′ phase indicate an increase of the hardness and the critical resolved shear stress caused by a considerable concentration of Re in the γ′ phase. Creep investigations show that the positive effect of Re is by far not as pronounced as in Ni-base superalloys. Several effects, which can contribute to this behavior, such as the lower Re concentration in γ and hence a slightly reduced effective diffusion coefficient, a smaller diffusion barrier of Re in Co compared to Ni, a slightly lower lattice misfit and γ′ volume fraction of the Re-containing alloy, are discussed.

Corresponding author
a) Address all correspondence to this author. e-mail:
Hide All

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to

Contributing Editor: Jürgen Eckert

Hide All
1. Sato J., Omori T., Oikawa K., Ohnuma I., Kainuma R., and Ishida K.: Cobalt-base high-temperature alloys. Science 312, 90 (2006).
2. Neumeier S., Freund L.P., and Göken M.: Novel wrought γ/γ′ cobalt base superalloys with high strength and improved oxidation resistance. Scr. Mater. 109, 104 (2015).
3. Suzuki A. and Pollock T.M.: High-temperature strength and deformation of γ/γ′ two-phase Co–Al–W-base alloys. Acta Mater. 56, 1288 (2008).
4. Bauer A., Neumeier S., Pyczak F., and Göken M.: Microstructure and creep strength of different γ/γ′-strengthened Co-base superalloy variants. Scr. Mater. 63, 1197 (2010).
5. Xue F., Zhou H.J., and Feng Q.: Improved high-temperature stability and creep property of novel Co-base singe-crystal alloys containing Ta and Ti. J. Miner. Met. Mater. Soc. TMS 66, 2486 (2014).
6. Titus M.S., Suzuki A., and Pollock T.M.: Creep and directional coarsening in single crystals of new γ–γ′ cobalt-base alloys. Scr. Mater. 66, 574 (2012).
7. Blavette D., Caron P., and Khan T.: An atom probe investigation of the role of rhenium additions in improving creep resistance of Ni-base superalloys. Scr. Metall. 20, 1395 (1986).
8. Pyczak F., Neumeier S., and Göken M.: Influence of lattice misfit on the internal stress and strain states before and after creep investigated in nickel-base superalloys containing rhenium and ruthenium. Mater. Sci. Eng., A 510–511, 295 (2009).
9. Durst K. and Göken M.: Micromechanical characterisation of the influence of rhenium on the mechanical properties in nickel-base superalloys. Mater. Sci. Eng., A 387–389, 312 (2004).
10. Yeh A.C. and Tin S.: Effects of Ru and Re additions on the high temperature flow stresses of Ni-base single crystal superalloys. Scr. Mater. 52, 519 (2005).
11. Pyczak F., Devrient B., and Mughrabi H.: The effect of different alloying elements on the thermal expansion coefficients, lattice constants and misfit of nickel-based superalloys investigated by X-ray diffraction. In Proceedings Superalloys 2004, Green K.A., Pollock T.M., Harada H., Howson T.E., Reed R.C., Schirra J.J., and Walston S.E., eds. (The Minerals, Metals and Materials Society, Warrendale, PA, 2004); pp. 827836.
12. Carroll L.J., Feng Q., Mansfield J.F., and Pollock T.M.: Elemental partitioning in Ru-containing nickel-base single crystal superalloys. Mater. Sci. Eng., A 457, 292 (2007).
13. Murakami H., Honma T., Koizumi Y., and Harada H.: Distribution of platinum group metals in Ni-base single-crystal superalloys. In Proceedings Superalloys 2000, Pollock T.M., Kissinger R.D., Bowman R.R., Green K.A., McLean M., Olsen S., and Schirra J.J., eds. (The Minerals, Metals and Materials Society, Warrendale, PA, 2000); pp. 747756
14. Reed R.C., Yeh A.C., Tin S., Babu S.S., and Miller M.K.: Identification of the partitioning characteristics of ruthenium in single crystal superalloys using atom probe tomography. Scr. Mater. 51, 327 (2004).
15. Franke O., Durst K., and Göken M.: Nanoindentation investigations to study solid solution hardening in Ni-based diffusion couples. J. Mater. Res. 24, 1127 (2009).
16. Fu C.L., Reed R., Janotti A., and Krcmar M.: On the diffusion of alloying elements in the nickel-base superalloys. In Proceedings Superalloys 2004, Green K.A., Pollock T.M., Harada H., Howson T.E., Reed R.C., Schirra J.J., and Walston S.E., eds. (The Minerals, Metals and Materials Society, Warrendale, PA, 2004); pp. 867875
17. Karunaratne M.S.A., Carter P., and Reed R.C.: Interdiffusion in the face-centred cubic phase of the Ni–Re, Ni–Ta and Ni–W systems between 900 and 1300 °C. Mater. Sci. Eng., A 281, 229 (2000).
18. Mottura A. and Reed R.C.: What is the role of rhenium in single crystal superalloys? In Eurosuperalloys 2014, Guédou J.Y. and Choné J., eds., MATEC Web of Conferences, 14, 01001 (2014).
19. Neumeier S., Rehman H.U., Neuner J., Zenk C.H., Michel S., Schuwalow S., Rogal J., Drautz R., and Göken M.: Diffusion of solutes in fcc cobalt investigated by diffusion couples and first principles kinetic Monte Carlo. Acta Mater. 106, 304 (2016).
20. Heckl A., Rettig R., and Singer R.F.: Solidification characteristics and segregation behavior of nickel-base superalloys in dependence on different rhenium and ruthenium contents. Metall. Mater. Trans. A 41, 202 (2009).
21. Oliver W.C. and Pharr G.M.: Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).
22. Hellman O.C., Vandenbroucke J.A., Rüsing J., Isheim D., and Seidman D.N.: Analysis of three-dimensional atom-probe data by the proximity histogram. Microsc. Microanal. 6, 437 (2000).
23. Thompson K., Lawrence D., Larson D.J., Olson J.D., Kelly T.F., and Gorman B.: In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107, 131 (2007).
24. Neumeier S., Pyczak F., and Göken M.: Influence of rhenium and ruthenium on the local mechanical properties of the γ and γ′ phases in nickel-base superalloys. Philos. Mag. 91, 4187 (2011).
25. Pyczak F., Neumeier S., and Göken M.: Temperature dependence of element partitioning in rhenium and ruthenium bearing nickel-base superalloys. Mater. Sci. Eng., A 527, 7939 (2010).
26. Omori T., Oikawa K., Sato J., Ohnuma I., Kattner U.R., Kainuma R., and Ishida K.: Partition behavior of alloying elements and phase transformation temperatures in Co–Al–W-base quaternary systems. Intermetallics 32, 274 (2013).
27. Povstugar I., Choi P-P., Neumeier S., Bauer A., Zenk C.H., Göken M., and Raabe D.: Elemental partitioning and mechanical properties of Ti- and Ta-containing Co–Al–W-base superalloys studied by atom probe tomography and nanoindentation. Acta Mater. 78, 78 (2014).
28. Pyczak F., Bauer A., Göken M., Lorenz U., Neumeier S., Oehring M., Paul J., Schell N., Schreyer A., Stark A., and Symanzik F.: The effect of tungsten content on the properties of L12-hardened Co–Al–W alloys. J. Alloys Compd. 632, 110 (2015).
29. Bocchini P.J., Lass E.A., Moon K-W., Williams M.E., Campbell C.E., Kattner U.R., Dunand D.C., and Seidman D.N.: Atom-probe tomographic study of γ/γ′ interfaces and compositions in an aged Co–Al–W superalloy. Scr. Mater. 68, 563 (2013).
30. Meher S., Yan H-Y., Nag S., Dye D., and Banerjee R.: Solute partitioning and site preference in γ/γ′ cobalt-base alloys. Scr. Mater. 67(10), 850 (2012).
31. Han Y., Ma W., Dong Z., Li S., and Gong S.: Effect of ruthenium on microstructure and stress rupture properties of a single crystal nickelbase superalloy. In Proceedings Superalloys 2008, Reed R.C., Green K.A., Caron P., Gabb T.B., Fahrmann M.G., Huron E.S., and Woodard S.A., eds. (The Minerals, Metals and Materials Society, Warrendale, PA, 2008); pp. 9197.
32. Brunner M., Hüttner R., Bölitz M-C., Völkl R., Mukherji D., Rösler J., Depka T., Somsen C., Eggeler G., and Glatzel U.: Creep properties beyond 1100 °C and microstructure of Co–Re–Cr alloys. Mater. Sci. Eng., A 528, 650 (2010).
33. Nash A. and Nash P.: Ni–Re (nickel–rhenium) system. Bull. Alloy Phase Diagrams 6, 348 (1985).
34. Mishima Y., Ochiai S., Hamao N., Yodogawa M., and Suzuki T.: Solid solution hardening of Ni3Al with ternary additions. Trans. Jpn. Inst. Met. 27, 648 (1986).
35. Mishima Y., Ochiai S., Yodogawa M., and Suzuki T.: Mechanical properties of Ni3Al with ternary addition of transition metal elements. Trans. Jpn. Inst. Met. 27, 41 (1986).
36. Mughrabi H.: The importance of sign and magnitude of γ/γ′ lattice misfit in superalloys—With special reference to the new γ′-hardened cobalt-base superalloys. Acta Mater. 81, 21 (2014).
37. Zhu Z., Basoalto H., Warnken N., and Reed R.C.: A model for the creep deformation behaviour of nickel-based single crystal superalloys. Acta Mater. 60, 4888 (2012).
38. Wazzan A.R.: Lattice and grain boundary self-diffusion in nickel. J. Appl. Phys. 36, 3596 (1965).
39. Bussmann W., Herzig C., Rempp W., Maier K., and Mehrer H.: Isotope effect and self-diffusion in face-centred cubic cobalt. Phys. Status Solidi A 56, 87 (1979).
40. Pröbstle M., Neumeier S., Feldner P., Rettig R., Helmer H.E., Singer R.F., and Göken M.: Improved creep strength of nickel-base superalloys by optimized γ/γ′ partitioning behavior of solid solution strengthening elements. Mater. Sci. Eng., A 676, 411 (2016).
41. Wollgramm P., Buck H., Neuking K., Parsa A.B., Schuwalow S., Rogal J., Drautz R., and Eggeler G.: On the role of Re in the stress and temperature dependence of creep of Ni-base single crystal superalloys. Mater. Sci. Eng., A 628, 382 (2015).
42. Schuwalow S., Rogal J., and Drautz R.: Vacancy mobility and interaction with transition metal solutes in Ni. J. Phys.: Condens. Matter 26, 485014 (2014).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 6
Total number of PDF views: 66 *
Loading metrics...

Abstract views

Total abstract views: 250 *
Loading metrics...

* Views captured on Cambridge Core between 12th July 2017 - 13th December 2017. This data will be updated every 24 hours.