Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-01T14:12:10.181Z Has data issue: false hasContentIssue false

The infrared dielectric properties of η–Al2O3

Published online by Cambridge University Press:  31 January 2011

Carlos Pecharromán
Affiliation:
Instituto de Ciencia de Materiales, Consejo Superior de Investigaciones Científicas, Calle Serrano, 115 duplicado, Madrid 28006, Spain
T. González-Carreño
Affiliation:
Instituto de Ciencia de Materiales, Consejo Superior de Investigaciones Científicas, Calle Serrano, 115 duplicado, Madrid 28006, Spain
Juan E. Iglesias*
Affiliation:
Instituto de Ciencia de Materiales, Consejo Superior de Investigaciones Científicas, Calle Serrano, 115 duplicado, Madrid 28006, Spain
*
a) Author to whom all correspondence should be addressed.
Get access

Abstract

The infrared complex permittivity function of pseudo-cubic, disordered, spinel-type variety of alumina, η–Al2O3, obtained by spray pyrolysis, has been determined from its IR reflectance spectra, measured at near to normal incidence on pressed powder pellets. The optical constants obtained therefrom have been verified by using them in the simulation of the corresponding absorption spectra for KBr-diluted pellets of this material, and these are in excellent agreement with the experimental spectra. All calculations are based on a procedure for the estimation of the effective dielectric function of a mixture incorporating percolation features, which has been recently developed by the authors.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Wefers, K. and Misra, C., Oxides and Hydroxides of Aluminum, Alcoa Technical Paper No. 19, Revised (Alcoa Laboratories, Pittsburgh, PA, 1987).Google Scholar
2.MacZura, G., Goodboy, K.P., and Koenig, J.J., Aluminum Oxide (Alumina), in Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed. (John Wiley, New York, 1984), pp. 218244.Google Scholar
3.Ervin, G., Acta Crystallogr. 5, 103 (1952).CrossRefGoogle Scholar
4.Lippens, B. C. and de Boer, J.H., Acta Crystallogr. 17, 1312 (1964).CrossRefGoogle Scholar
5.John, C. S., Alma, N.C.M., and Hays, G.R., Appl. Catalysis 6, 341 (1983).CrossRefGoogle Scholar
6.Zhou, R-S. and Snyder, R., Acta Crystallogr. B47, 617 (1991).CrossRefGoogle Scholar
7.Megaw, H. D., Crystal Structures (W. B. Saunders Co., Philadelphia, PA, 1973), p. 221.Google Scholar
8.Saalfeld, H., Clay Min. Bull. 3, 249 (1958).CrossRefGoogle Scholar
9.Wilson, S. J. and McConnell, J.D.C., J. Solid State Chem. 34, 315 (1980).CrossRefGoogle Scholar
10.Pecharromán, C. and Iglesias, J. E., J. Phys. Condensed Matter 6, 7125 (1994).CrossRefGoogle Scholar
11.Pecharromán, C., González-Carreño, T., and Iglesias, J. E., Phys. Chem. Min. 22, 21 (1995).CrossRefGoogle Scholar
12.González-Carreño, T., Mifsud, A., Serna, C. J., and Palacios, J. M., Mater. Chem. Phys. 27, 287 (1991).CrossRefGoogle Scholar
13.Landauer, R., J. Appl. Phys. 23, 779 (1952).CrossRefGoogle Scholar
14.Proceedings of the First Conference on the Electrical Transport and Optical Properties of Inhomogeneous Media, edited by Garland, J.C. and Tanner, D. B. AIP Conf. Proc. No. 40 (AIP, New York, 1978).Google Scholar
15.Proceedings of the Second International Conference on Electrical Transport and Optical Properties of Inhomogeneous Media, edited by J. Lafait and D. B. Tanner, Physica A 157(1) (1989).Google Scholar
16.Pecharromán, C. and Iglesias, J. E., Phys. Rev. B 49, 7137 (1994).CrossRefGoogle Scholar
17.Osborn, J. A., Phys. Rev. 67, 351 (1945).CrossRefGoogle Scholar
18.Born, M. and Huang, K., Dynamical Theory of Crystal Lattices (Oxford University Press, London, 1954).Google Scholar
19.Gervais, F. and Piriou, B., Phys. Rev. B 10, 1642 (1974).CrossRefGoogle Scholar
20.Gervais, F. and Piriou, B., J. Phys. C 7, 2374 (1974).CrossRefGoogle Scholar
21.Ishii, M., Nakahira, M., and Yamanaka, T., Solid State Commun. 11, 209 (1972).CrossRefGoogle Scholar
22.Striefler, M. E. and Boldish, S. I., J. Phys. C 11, L237 (1978).CrossRefGoogle Scholar
23.Servoin, J. L., Luspin, Y., and Gervais, F., Phys. Rev. B 22, 5501 (1980).CrossRefGoogle Scholar
24.Iglesias, J. E., Ocaña, M., and Serna, C. J., Appl. Spectrosc. 44, 418 (1990).CrossRefGoogle Scholar
25.Genzel, L. and Martin, T. P., Phys. Status Solidi B 51, 91 (1972).CrossRefGoogle Scholar
26.Pecharromán, C., González-Carreño, T., and Iglesias, J.E., Appl. Spectrosc. 47, 1203 (1993).CrossRefGoogle Scholar
27.Serna, C. J., Ocaña, M., and Iglesias, J.E., J. Phys. C 20, 473 (1987).CrossRefGoogle Scholar