Hostname: page-component-76c49bb84f-c7tcl Total loading time: 0 Render date: 2025-07-06T18:10:34.509Z Has data issue: false hasContentIssue false

Initial stages of yield in nanoindentation

Published online by Cambridge University Press:  31 January 2011

J. D. Kiely*
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185–1413
K. F. Jarausch
Affiliation:
North Carolina State University, Raleigh, North Carolina 27695–7531
J. E. Houston
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185–1413
P. E. Russell
Affiliation:
North Carolina State University, Raleigh, North Carolina 27695–7531
*
a)Address all correspondence to this author. e-mial: jdkiely@sandia.gov
Get access

Abstract

We have used the interfacial force microscope to perform nanoindentations on Au single-crystal surfaces. We have observed two distinct regimes of plastic deformation, which are distinguished by the magnitude of discontinuities in load relaxation. At lower stresses, relaxation occurs in small deviations from elastic behavior, while at the higher stresses they take the form of large load drops, often resulting in complete relaxation of the applied load. These major events create a relatively wide plastic zone that subsequently deepens more rapidly than it widens. We discuss these findings in terms of contrasting models of dislocation processes in the two regimes.

Information

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

REFERENCES

1.Tabor, D., The Hardness of Metals (Clarendon Press, Oxford, 1951).Google Scholar
2.Hill, R., The Mathematical Theory of Plasticity (Clarendon Press, Oxford, 1950).Google Scholar
3.Samuels, L.E. and Mulhearn, T. O., J. Mech. Phys. Solids 5, 125134 (1957).CrossRefGoogle Scholar
4.Johnson, K.L., J. Mech. Phys. Solids 18, 115126 (1970).CrossRefGoogle Scholar
5.Johnson, K.L., Contact Mechanics (Cambridge University Press, Cambridge, 1996).Google Scholar
6.Gane, N., Proceedings of the Royal Society London A317, 367391 (1970).Google Scholar
7.Pethica, J. B., Hutchinson, R., and Oliver, W. C., Philos. Mag. A 48, 593606 (1983).CrossRefGoogle Scholar
8.Pharr, G.M. and Oliver, W.C., J. Mater. Res. 4, 94101 (1989).CrossRefGoogle Scholar
9.Michalske, T.A. and Houston, J. E., Acta Mater. 46 (2), 391396 (1998).CrossRefGoogle Scholar
10.Gerberich, W.W., Venkataraman, S. K., Huang, H., Harvey, S. E., and Kohlstedt, D. L., Acta Metall. Mater. 43, 15691576 (1995).CrossRefGoogle Scholar
11.Corcoran, S.G., Colton, R. J., Lilleodden, E. T., and Gerberich, W.W., Phys. Rev. B 55, R16057 (1997).CrossRefGoogle Scholar
12.Kiely, J. D. and Houston, J.E., Phys. Rev. B 57, 1258812594 (1998).CrossRefGoogle Scholar
13.Gerberich, W.W., Nelson, J. C., Lilleodden, E.T., Anderson, P., and Wyrobeck, J. T., Acta Mater. 44, 35853598 (1996).CrossRefGoogle Scholar
14.Bahr, D.F., Kramer, D. E., and Gerberich, W.W., Acta Mater. 46, 36053617 (1998).CrossRefGoogle Scholar
15.Bahr, D.F., Watkins, C. M., Kramer, D.E., and Gerberich, W.W., MRS Proceedings, Spring 1998 Meeting (1998).Google Scholar
16.Weihs, T.P., Lawrence, C.W., Derby, B., Scruby, C. B., and Pethica, J. B., presented at the Mater. Res. Soc. Symp. Proc., Pittsburgh, 1992.Google Scholar
17.Syed Asif, S. A. and Pethica, J. B., Philos. Mag. A 76, 11051118 (1997).CrossRefGoogle Scholar
18.Joyce, S.A. and Houston, J.E., Rev. Sci. Instrum. 62, 710715 (1991).CrossRefGoogle Scholar
19. Materials Analytical Services, Raleigh, NC 27606; Russell, P. E., Stark, J. T., Griffis, D. P., Phillips, J. R., and Jarausch, K. F., J. Vac. Sci. Technol. B 16, 2494 (1998).CrossRefGoogle Scholar
20.Hsu, T. and Cowley, J. M., Ultramicroscopy 11, 239 (1983).CrossRefGoogle Scholar
21.Schneir, J., Sonnenfeld, R., Marti, O., Hansma, P. K., Demuth, J. E., and Hamers, R. J., J. Appl. Phys. 63, 717721 (1988).CrossRefGoogle Scholar
22.Thomas, R. C., Houston, J.E., Michalske, T. A., and Crooks, R. M., Science 259, 1883 (1993).CrossRefGoogle Scholar
23.Houston, J. E., Michalske, T. A., and Crooks, R. M., presented at the 20th Annual Meeting of the Adhesion Society, Hilton-Head, SC, 1997.Google Scholar
24.Timoshenko, S. P. and Goodier, J. N., Theory of Elasticity, 3rd ed. (McGraw-Hill, New York, 1970).Google Scholar
25.Bahr, D.F. and Gerberich, W.W., Metall. Trans. 27A, 37933800 (1996).CrossRefGoogle Scholar
26.Kelchner, C.L. and Hamilton, J.C., unpublished (1998).Google Scholar
27.Trevor, D.J. and Chidsey, C.E. D., J. Vac. Sci. Technol. B 9, 964968 (1991).CrossRefGoogle Scholar
28.Stranick, S.J., Parikh, A. N., Allara, D. L., and Weiss, P. S., J. Phys. Chem. 98, 1113611142 (1994).CrossRefGoogle Scholar
29.Kiely, J. D. and Houston, J. E., Phys. Rev. Lett. (1998).Google Scholar
30.Lawn, B., Fracture of Brittle Solids (Cambridge University Press, Cambridge, 1993).CrossRefGoogle Scholar
31.Bahr, D. F. and Gerberich, W. W., J. Mater. Res. 13, 10651074 (1998).CrossRefGoogle Scholar
32.Honeycombe, R.W.K, The Plastic Deformation of Metals (St. Martin's Press, New York, 1968).Google Scholar
33.Nabarro, F.R. N., Theory of Crystal Dislocations (Oxford University Press, Oxford, 1967).Google Scholar
34.Hirth, J. P. and Lothe, J., Theory of Dislocations, 2nd ed. (John Wiley and Sons, New York, 1982).Google Scholar
35.Davies, R.M., Proc. Roy. Soc. (London) A197, 416432 (1949).Google Scholar