Skip to main content Accessibility help

Interfaces and defect composition at the near-atomic scale through atom probe tomography investigations


Atom probe tomography (APT) is rising in influence across many parts of materials science and engineering thanks to its unique combination of highly sensitive composition measurement and three-dimensional microstructural characterization. In this invited article, we have selected a few recent applications that showcase the unique capacity of APT to measure the local composition at structural defects. Whether we consider dislocations, stacking faults, or grain boundary, the detailed compositional measurements tend to indicate specific partitioning behaviors for the different solutes in both complex engineering and model alloys we investigated.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Interfaces and defect composition at the near-atomic scale through atom probe tomography investigations
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Interfaces and defect composition at the near-atomic scale through atom probe tomography investigations
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Interfaces and defect composition at the near-atomic scale through atom probe tomography investigations
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

a)Address all correspondence to this author. e-mail:,


Hide All

Currently also at Department of Materials, Imperial College London, United Kingdom.



Hide All
1.Müller, E.W.: Das Feldionenmikroskop. Z. Phys. 131, 136 (1951).
2.Müller, E.W.: Field ion microscopy. Science 149, 591 (1965).
3.Müller, E.W.: Resolution of the atomic structure of a metal surface by the field ion microscope. J. Appl. Phys. 27, 474 (1956).
4.Müller, E.W., Panitz, J.A., McLane, S.B., and Müller, E.W.: Atom-probe field ion microscope. Rev. Sci. Instrum. 39, 83 (1968).
5.Brandon, D.G., Ralph, B., Ranganathan, S., and Wald, M.S.: Field ion microscope study of atomic configuration at grain boundaries. Acta Metall. 12, 813 (1964).
6.Smith, D.A., Fortes, M.A., Kelly, A., and Ralph, B.: Contrast from stacking faults and partial dislocations in field-ion microscope. Philos. Mag. 17, 1065 (1968).
7.Berger, A.S., Seidman, D.N., and Balluffi, R.W.: A quantitative study of vacancy defects in quenched platinum by field ion microscopy and electrical resistivity—I. Experimental results. Acta Metall. 21, 137 (1973).
8.Dagan, M., Gault, B., Smith, G.D.W., Bagot, P.A.J., and Moody, M.P.: Automated atom-by-atom three-dimensional (3D) reconstruction of field ion microscopy data. Microsc. Microanal. 23, 1 (2017).
9.Beavan, L., Scanlan, R., and Seidman, D.: The defect structure of depleted zones in irradiated tungsten. Acta Metall. 19, 1339 (1971).
10.Vurpillot, F., Gilbert, M., and Deconihout, B.: Towards the three-dimensional field ion microscope. Surf. Interface Anal. 39, 273 (2007).
11.Dagan, M., Hanna, L.R., Xu, A., Roberts, S.G., Smith, G.D.W., Gault, B., Edmondson, P.D., Bagot, P.A.J., and Moody, M.P.: Imaging of radiation damage using complementary field ion microscopy and atom probe tomography. Ultramicroscopy 159, 387 (2015).
12.Katnagallu, S., Dagan, M., Parviainen, S., Nematollahi, A., Grabowski, B., Bagot, P.A.J., Rolland, N., Neugebauer, J., Raabe, D., Vurpillot, F., Moody, M.P., and Gault, B.: Impact of local electrostatic field rearrangement on field ionization. J. Phys. D: Appl. Phys. 51, 105601 (2018).
13.Vurpillot, F., Danoix, F., Gilbert, M., Koelling, S., Dagan, M., and Seidman, D.N.: True atomic-scale imaging in three dimensions: A review of the rebirth of field-ion microscopy. Microsc. Microanal. 23, 1 (2017).
14.Blavette, D., Bostel, A., Sarrau, J.M., Deconihout, B., and Menand, A.: An atom probe for three-dimensional tomography. Nature 363, 432 (1993).
15.Miller, M.K.: Atom Probe Tomography: Analysis at the Atomic Level (Kluwer Academic/Plenum Publishers, London, 2000).
16.Gault, B., Moody, M.P., Cairney, J.M., and Ringer, S.P.: Atom Probe Microscopy (Springer, New York, New York, 2012).
17.Kelly, T.F., Gribb, T.T., Olson, J.D., Martens, R.L., Shepard, J.D., Wiener, S.A., Kunicki, T.C., Ulfig, R.M., Lenz, D.R., Strennen, E.M., Oltman, E., Bunton, J.H., and Strait, D.R.: First data from a commercial local electrode atom probe (LEAP). Microsc. Microanal. 10, 373 (2004).
18.Da Costa, G., Vurpillot, F., Bostel, A., Bouet, M., and Deconihout, B.: Design of a delay-line position-sensitive detector with improved performance. Rev. Sci. Instrum. 76, 13304 (2005).
19.Jagutzki, O., Cerezo, A., Czasch, A., Dorner, R., Hattass, M., Huang, M., Mergel, V., Spillmann, U., Ullmann-Pfleger, K., Weber, T., Schmidt-Bocking, H., and Smith, G.D.W.: Multiple hit readout of a microchannel plate detector with a three-layer delay-line anode. IEEE Trans. Nucl. Sci. 49, 2477 (2002).
20.Gault, B., Moody, M.P., de Geuser, F., Haley, D., Stephenson, L.T., and Ringer, S.P.: Origin of the spatial resolution in atom probe microscopy. Appl. Phys. Lett. 95, 034103 (2009).
21.Gault, B., Moody, M.P., De Geuser, F., La Fontaine, A., Stephenson, L.T., Haley, D., and Ringer, S.P.: Spatial resolution in atom probe tomography. Microsc. Microanal. 16, 99 (2010).
22.Cadel, E., Vurpillot, F., Larde, R., Duguay, S., and Deconihout, B.: Depth resolution function of the laser assisted tomographic atom probe in the investigation of semiconductors. J. Appl. Phys. 106, 44908 (2009).
23.Gault, B., Müller, M., La Fontaine, A., Moody, M.P., Shariq, A., Cerezo, A., Ringer, S.P., and Smith, G.D.W.: Influence of surface migration on the spatial resolution of pulsed laser atom probe tomography. J. Appl. Phys. 108, 044904 (2010).
24.Gruber, M., Vurpillot, F., Bostel, A., and Deconihout, B.: A kinetic Monte Carlo approach on the influence of temperature. Surf. Sci. 605, 2025 (2011).
25.Waugh, A.R., Boyes, E.D., and Southon, M.J.: Investigations of field evaporation with field desorption microscope. Surf. Sci. 61, 109 (1976).
26.Vurpillot, F. and Oberdorfer, C.: Modeling atom probe tomography: A review. Ultramicroscopy 159, 202 (2015).
27.Gault, B., Moody, M.P., Cairney, J.M., and Ringer, S.P.: Atom probe crystallography. Mater. Today 15, 378 (2012).
28.Araullo-Peters, V.J., Gault, B., Shrestha, S.L., Yao, L., Moody, M.P., Ringer, S.P., and Cairney, J.M.: Atom probe crystallography: Atomic-scale 3-D orientation mapping. Scr. Mater. 66, 907 (2012).
29.Breen, A.J., Babinsky, K., Day, A.C., Eder, K., Oakman, C.J., Trimby, P.W., Primig, S., Cairney, J.M., and Ringer, S.P.: Correlating atom probe crystallographic measurements with transmission Kikuchi diffraction data. Microsc. Microanal. 23, 279290 (2017).
30.Yao, L., Moody, M.P., Cairney, J.M., Haley, D., Ceguerra, A.V., Zhu, C., and Ringer, S.P.: Crystallographic structural analysis in atom probe microscopy via 3D Hough transformation. Ultramicroscopy 111, 458 (2011).
31.Araullo-Peters, V.J., Breen, A.J., Ceguerra, A.V., Gault, B., Ringer, S.P., and Cairney, J.M.: A new systematic framework for crystallographic analysis of atom probe data. Ultramicroscopy 154, 7 (2015).
32.Moody, M.P., Gault, B., Stephenson, L.T., Haley, D., and Ringer, S.P.: Qualification of the tomographic reconstruction in atom probe by advanced spatial distribution map techniques. Ultramicroscopy 109, 815 (2009).
33.Moody, M.P., Tang, F., Gault, B., Ringer, S.P., and Cairney, J.M.: Atom probe crystallography: Characterization of grain boundary orientation relationships in nanocrystalline aluminium. Ultramicroscopy 111, 493 (2011).
34.Blavette, D., Cadel, E., Fraczkeiwicz, A., and Menand, A.: Three-dimensional atomic-scale imaging of impurity segregation to line defects. Science 286, 2317 (1999).
35.Cadel, E., Fraczkiewicz, A., and Blavette, D.: Suzuki effect on {001} stacking faults in boron-doped FeAl intermetallics. Scr. Mater. 51, 437 (2004).
36.Li, Y., Raabe, D., Herbig, M., Choi, P-P., Goto, S., Kostka, A., Yarita, H., Borchers, C., and Kirchheim, R.: Segregation stabilizes nanocrystalline bulk steel with near theoretical strength. Phys. Rev. Lett. 113, 106104 (2014).
37.Blavette, D., Fraczkeiwicz, A., and Cadel, E.: 3D atomic investigation of solute segregation to both planar and line defects in metallic alloys. J. Phys. IV 10, 111 (2000).
38.Blavette, D., Cadel, E., Pareige, C., Deconihout, B., and Caron, P.: Phase transformation and segregation to lattice defects in Ni-base superalloys. Microsc. Microanal. 13, 464 (2007).
39.Thompson, K., Flaitz, P.L., Ronsheim, P., Larson, D.J., and Kelly, T.F.: Imaging of arsenic Cottrell atmospheres around silicon defects by three-dimensional atom probe tomography. Science 317, 1370 (2007).
40.Hoummada, K., Mangelinck, D., Gault, B., and Cabié, M.: Nickel segregation on dislocation loops in implanted silicon. Scr. Mater. 64, 378 (2011).
41.Cojocaru-Mirédin, O., Schwarz, T., and Abou-Ras, D.: Assessment of elemental distributions at line and planar defects in Cu(In,Ga)Se2 thin films by atom probe tomography. Scr. Mater. 148, 106114 (2018).
42.Cojocaru-Miredin, O., Cadel, E., Vurpillot, F., Mangelinck, D., and Blavette, D.: Three-dimensional atomic-scale imaging of boron clusters in implanted silicon. Scr. Mater. 60, 285 (2009).
43.Thompson, K., Lawrence, D., Larson, D.J., Olson, J.D., Kelly, T.F., and Gorman, B.: In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107, 131 (2007).
44.Estivill, R., Audoit, G., Barnes, J-P., Grenier, A., and Blavette, D.: Preparation and analysis of atom probe tips by xenon focused ion beam milling. Microsc. Microanal. 22, 576582 (2016).
45.Reich, L., Ringer, S.P., and Hono, K.: Origin of the initial rapid age hardening in an Al–1.7 at.% Mg–1.1 at.% Cu alloy. Philos. Mag. Lett. 79, 639 (1999).
46.Ringer, S.P. and Hono, K.: Microstructural evolution and age hardening in aluminium alloys: Atom probe field-ion microscopy and transmission electron microscopy studies. Mater. Charact. 44, 101 (2000).
47.Taheri, M.L., Sebastian, J.T., Reed, B.W., Seidman, D.N., and Rollett, A.D.: Site-specific atomic scale analysis of solute segregation to a coincidence site lattice grain boundary. Ultramicroscopy 110, 278 (2010).
48.Aboulfadl, H., Deges, J., Choi, P., and Raabe, D.: Dynamic strain aging studied at the atomic scale. Acta Mater. 86, 34 (2015).
49.Herzog, D., Seyda, V., Wycisk, E., and Emmelmann, C.: Additive manufacturing of metals. Acta Mater. 117, 371 (2016).
50.DebRoy, T., Wei, H.L., Zuback, J.S., Mukherjee, T., Elmer, J.W., Milewski, J.O., Beese, A.M., Wilson-Heid, A., De, A., and Zhang, W.: Additive manufacturing of metallic components—Process, structure and properties. Prog. Mater. Sci. 92, 112 (2018).
51.Harada, Y. and Dunand, D.C.: Thermal expansion of Al3Sc and Al3(Sc0.75X0.25). Scr. Mater. 48, 219 (2003).
52.Tang, F., Gianola, D.S., Moody, M.P., Hemker, K.J., and Cairney, J.M.: Observations of grain boundary impurities in nanocrystalline Al and their influence on microstructural stability and mechanical behaviour. Acta Mater. 60, 1038 (2012).
53.Kontis, P., Li, Z., Collins, D.M., Cormier, J., Raabe, D., and Gault, B.: The effect of chromium and cobalt segregation at dislocations on nickel-based superalloys. Scr. Mater. 145, 76 (2018).
54.Kontis, P., Collins, D.M., Wilkinson, A.J., Reed, R.C., Raabe, D., and Gault, B.: Microstructural degradation of polycrystalline superalloys from oxidized carbides and implications on crack initiation. Scr. Mater. 147, 59 (2018).
55.Makineni, S.K., Lenz, M., Kontis, P., Li, Z., Kumar, A., Felfer, P.J., Neumeier, S., Herbig, M., Spiecker, E., Raabe, D., and Gault, B.: Correlative microscopy—Novel methods and their applications to explore 3D chemistry and structure of nanoscale lattice defects: A case study in superalloys. JOM 70, 1736 (2018).
56.Kuzmina, M., Herbig, M., Ponge, D., Sandlobes, S., and Raabe, D.: Linear complexions: Confined chemical and structural states at dislocations. Science 349, 1080 (2015).
57.Love, G.: Dislocation pipe diffusion. Acta Metall. 12, 731 (1964).
58.Legros, M., Dehm, G., Arzt, E., and Balk, T.J.: Observation of giant diffusivity along dislocation cores. Science 319, 1646 (2008).
59.Kolbe, M., Dlouhy, A., and Eggeler, G.: Dislocation reactions at γ/γ′-interfaces during shear creep deformation in the macroscopic crystallographic shear system (001)[110] of CMSX6 superalloy single crystals at 1025 °C. Mater. Sci. Eng., A 246, 133 (1998).
60.Pollock, T.M. and Argon, A.S.: Directional coarsening in nickel-base single crystals with volume fractions of coherent precipitates. Acta Metall. Mater. 42, 1859 (1994).
61.Reed, R.C.: The Superalloys: Fundamentals and Applications (Cambridge University Press, New York, New York, 2006).
62.Connolley, T., Reed, P.A.S., and Starink, M.J.: Short crack initiation and growth at 600 °C in notched specimens of Inconel718. Mater. Sci. Eng., A 340, 139 (2003).
63.Titus, M.S., Mottura, A., Babu Viswanathan, G., Suzuki, A., Mills, M.J., and Pollock, T.M.: High resolution energy dispersive spectroscopy mapping of planar defects in L12-containing Co-base superalloys. Acta Mater. 89, 423 (2015).
64.Eggeler, Y., Müller, J., Titus, M.S., Suzuki, A., Pollock, T.M., and Spiecker, E.: Planar defect formation in the γ′ phase during high temperature creep in single crystal CoNi-base superalloys. Acta Mater. 113, 335 (2016).
65.Zaefferer, S. and Elhami, N-N.: Theory and application of electron channelling contrast imaging under controlled diffraction conditions. Acta Mater. 75, 20 (2014).
66.Makineni, S.K., Kumar, A., Lenz, M., Kontis, P., Meiners, T., Zaefferer, S., Zenk, C.H., Eggeler, G., Neumeier, S., Spiecker, E., Raabe, D., and Gault, B.: A new diffusive phase transformation mechanism assisted by extended dislocations during creep of a single crystalline CoNi based superalloy. Acta Mater. 155, 362 (2018).
67.Makineni, S.K., Lenz, M., Neumeier, S., Spiecker, E., Raabe, D., and Gault, B.: Elemental segregation to antiphase boundaries in a crept CoNi-based single crystal superalloy. Scr. Mater. 157, 62 (2018).
68.Kato, T.: Cu(In,Ga)(Se,S)2 solar cell research in Solar Frontier: Progress and current status. Jpn. J. Appl. Phys. 56, 04CA02 (2017).
69.Schwarz, T., Stechmann, G., Gault, B., Cojocaru-Mirédin, O., Wuerz, R., and Raabe, D.: Correlative transmission Kikuchi diffraction and atom probe tomography study of Cu(In,Ga)Se2 grain boundaries. Prog. Photovoltaics Res. Appl. 26, 196 (2018).
70.Abou-Ras, D., Schmidt, S.S., Schäfer, N., Kavalakkatt, J., Rissom, T., Unold, T., Mainz, R., Weber, A., Kirchartz, T., Simsek Sanli, E., van Aken, P.A., Ramasse, Q.M., Kleebe, H-J., Azulay, D., Balberg, I., Millo, O., Cojocaru-Mirédin, O., Barragan-Yani, D., Albe, K., Haarstrich, J., and Ronning, C.: Compositional and electrical properties of line and planar defects in Cu(In,Ga)Se2 thin films for solar cells—A review. Phys. Status Solidi RRL 10, 363 (2016).
71.Wei, S-H., Zhang, S.B., and Zunger, A.: Effects of Na on the electrical and structural properties of CuInSe2. J. Appl. Phys. 85, 7214 (1999).
72.Kwiatkowski da Silva, A., Ponge, D., Peng, Z., Inden, G., Lu, Y., Breen, A., Gault, B., and Raabe, D.: Phase nucleation through confined spinodal fluctuations at crystal defects evidenced in Fe–Mn alloys. Nat. Commun. 9, 1137 (2018).
73.Kwiatkowski da Silva, A., Leyson, G., Kuzmina, M., Ponge, D., Herbig, M., Sandlöbes, S., Gault, B., Neugebauer, J., and Raabe, D.: Confined chemical and structural states at dislocations in Fe–9 wt% Mn steels: A correlative TEM-atom probe study combined with multiscale modelling. Acta Mater. 124, 305 (2017).
74.Cantwell, P.R., Tang, M., Dillon, S.J., Luo, J., Rohrer, G.S., and Harmer, M.P.: Grain boundary complexions. Acta Mater. 62, 1 (2014).
75.Rupert, T.J.: The role of complexions in metallic nano-grain stability and deformation. Curr. Opin. Solid State Mater. Sci. 20, 257 (2016).
76.Kuzmina, M., Ponge, D., and Raabe, D.: Grain boundary segregation engineering and austenite reversion turn embrittlement into toughness: Example of a 9 wt% medium Mn steel. Acta Mater. 86, 182 (2015).
77.Numakura, H. and Koiwa, M.: Hydride precipitation in titanium. Acta Metall. 32, 1799 (1984).
78.Briant, C., Wang, Z., and Chollocoop, N.: Hydrogen embrittlement of commercial purity titanium. Corros. Sci. 44, 1875 (2002).
79.Nelson, H.G.: A film-rupture model of hydrogen-induced, slow crack growth in acicular alpha-beta titanium. Metall. Trans. A 7, 621 (1976).
80.Gammon, L.M., Briggs, R.D., Packard, J.M., Batson, K.W., Boyer, R., and Domby, C.W.: Metallography and microstructures of titanium and its alloys. Mater. Park. OH ASM Int. 9, 899 (2004).
81.Ding, R. and Jones, I.P.: In situ hydride formation in titanium during focused ion milling. J. Electron Microsc. 60, 1 (2011).
82.Chang, Y., Breen, A.J., Tarzimoghadam, Z., Kürnsteiner, P., Gardner, H., Ackerman, A., Radecka, A., Bagot, P.A.J., Lu, W., Li, T., Jägle, E.A., Herbig, M., Stephenson, L.T., Moody, M.P., Rugg, D., Dye, D., Ponge, D., Raabe, D., and Gault, B.: Characterizing solute hydrogen and hydrides in pure and alloyed titanium at the atomic scale. Acta Mater. 150, 273 (2018).


Related content

Powered by UNSILO

Interfaces and defect composition at the near-atomic scale through atom probe tomography investigations


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.