Skip to main content
×
×
Home

Introduction

  • Enrique Martinez (a1), Danny Perez (a1), Vikram Gavani (a2) and Steven Kenny (a3)
  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Introduction
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Introduction
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Introduction
      Available formats
      ×
Abstract
Copyright
References
Hide All
1.Kohn, W. and Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, 11331138 (1965).
2.Bowler, D.R. and Miyazaki, T.: O(N) methods in electronic structure calculations. Rep. Prog. Phys. 75, 036503 (2012).
3.Goedecker, S.: Linear scaling electronic structure methods. Rev. Mod. Phys. 71, 1085 (1999).
4.Witt, W.C., del Rio, B.G., Dieterich, J.M., and Carter, E.A.: Orbital-free density functional theory for materials research. J. Mater. Res., 119 (2018). doi: 10.1557/jmr.2017.462.
5.Niklasson, A., Tymczak, C., and Challacombe, M.: Time-reversible Born-Oppenheimer molecular dynamics. Phys. Rev. Lett. 97, (2006).
6.Niklasson, A.: Extended Born-Oppenheimer molecular dynamics. Phys. Rev. Lett. 100, (2008).
7.Niklasson, A.M.N. et al.: Extended Lagrangian Born–Oppenheimer molecular dynamics with dissipation. J. Chem. Phys. 130, 214109 (2009).
8.Steneteg, P., Abrikosov, I.A., Weber, V., and Niklasson, A.M.N.: Wave function extended Lagrangian Born-Oppenheimer molecular dynamics. Phys. Rev. B 82, (2010).
9.Hutter, J.: Car–Parrinello molecular dynamics. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2, 604612 (2012).
10.Souvatzis, P. and Niklasson, A.M.N.: Extended Lagrangian Born-Oppenheimer molecular dynamics in the limit of vanishing self-consistent field optimization. J. Chem. Phys. 139, 214102 (2013).
11.Niklasson, A.M.N. and Cawkwell, M.J.: Generalized extended Lagrangian Born-Oppenheimer molecular dynamics. J. Chem. Phys. 141, 164123 (2014).
12.Martínez, E., Cawkwell, M.J., Voter, A.F., and Niklasson, A.M.N.: Thermostating extended Lagrangian Born-Oppenheimer molecular dynamics. J. Chem. Phys. 142, 154120 (2015).
13.Voter, A.F.: A method for accelerating the molecular dynamics simulation of infrequent events. J. Chem. Phys. 106, 4665 (1997).
14.Voter, A.F.: Parallel replica method for dynamics of infrequent events. Phys. Rev. B 57, R13985 (1998).
15.So/rensen, M.R. and Voter, A.F.: Temperature-accelerated dynamics for simulation of infrequent events. J. Chem. Phys. 112, 9599 (2000).
16.Bris, C.L., Lelievre, T., Luskin, M., and Perez, D.: A mathematical formalization of the parallel replica dynamics. Monte Carlo Methods Appl. 18, 119 (2012).
17.Lelièvre, T.: Accelerated dynamics: Mathematical foundations and algorithmic improvements. Eur. Phys. J.: Spec. Top. 224, 24292444 (2015).
18.Perez, D., Huang, R., and Voter, A.F.: Long-time molecular dynamics simulations on massively parallel platforms: A comparison of parallel replica dynamics and parallel trajectory splicing. J. Mater. Res., 110 (2017). doi: 10.1557/jmr.2017.456.
19.Zamora, R.J., Perez, D., and Voter, A.F.: Speculation and replication in temperature accelerated dynamics. J. Mater. Res., 112 (2018). doi: 10.1557/jmr.2018.17.
20.Perez, D., Cubuk, E.D., Waterland, A., Kaxiras, E., and Voter, A.F.: Long-time dynamics through parallel trajectory splicing. J. Chem. Theory Comput. (2015). doi: 10.1021/acs.jctc.5b00916.
21.Bortz, A.B., Kalos, M.H., and Lebowitz, J.L.: A new algorithm for Monte Carlo simulation of king spin systems. J. Comput. Phys. 17, 1018 (1975).
22.Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403434 (1976).
23.Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 23402361 (1977).
24.Yang, Q., Sing-Long, C.A., and Reed, E.J.: L1 regularization-based model reduction of complex chemistry molecular dynamics for statistical learning of kinetic Monte Carlo models. MRS Adv. 1, 17671772 (2016).
25.Martínez, E., Senninger, O., Fu, C-C., and Soisson, F.: Decomposition kinetics of Fe–Cr solid solutions during thermal aging. Phys. Rev. B 86, (2012).
26.Archarya, S.R. and Rahman, T.S.: Toward multiscale modeling of thin-film growth processes using SLKMC. J. Mater. Res. 33, 709719 (2018).
27.Caturla, M.J. et al.: Comparative study of radiation damage accumulation in Cu and Fe. J. Nucl. Mater. 276, 1321 (2000).
28.Martin-Bragado, I., Rivera, A., Valles, G., Gomez-Selles, J.L., and Caturla, M.J.: MMonCa: An object kinetic Monte Carlo simulator for damage irradiation evolution and defect diffusion. Comput. Phys. Commun. 184, 27032710 (2013).
29.Becquart, C.S. and Domain, C.: Modeling microstructure and irradiation effects. Metall. Mater. Trans. A 42, 852870 (2010).
30.Stoller, R.E., Golubov, S.I., Domain, C., and Becquart, C.S.: Mean field rate theory and object kinetic Monte Carlo: A comparison of kinetic models. J. Nucl. Mater. 382, 7790 (2008).
31.Soisson, F.: Kinetic Monte Carlo simulations of radiation induced segregation and precipitation. J. Nucl. Mater. 349, 235250 (2006).
32.Soisson, F.: Monte Carlo simulations of segregation and precipitation in alloys under irradiation. Philos. Mag. 85, 489495 (2005).
33.Soisson, F. and Jourdan, T.: Radiation-accelerated precipitation in Fe–Cr alloys. Acta Mater. 103, 870881 (2016).
34.Soisson, F. and Martin, G.: Monte Carlo simulations of the decomposition of metastable solid solutions: Transient and steady-state nucleation kinetics. Phys. Rev. B 62, 203 (2000).
35.Terentyev, D. et al.: Further development of large-scale atomistic modelling techniques for Fe–Cr alloys. J. Nucl. Mater. 409, 167175 (2011).
36.Opplestrup, T., Bulatov, V., Gilmer, G., Kalos, M., and Sadigh, B.: First-passage Monte Carlo algorithm: Diffusion without all the hops. Phys. Rev. Lett. 97, (2006).
37.Hudson, T.S., Dudarev, S.L., Caturla, M-J., and Sutton, A.P.: Effects of elastic interactions on post-cascade radiation damage evolution in kinetic Monte Carlo simulations. Philos. Mag. 85, 661675 (2005).
38.Wen, M., Ghoniem, N.M., and Singh, B.N.: Dislocation decoration and raft formation in irradiated materials. Philos. Mag. 85, 25612580 (2005).
39.Fu, C-C., Torre, J.D., Willaime, F., Bocquet, J-L., and Barbu, A.: Multiscale modelling of defect kinetics in irradiated iron. Nat. Mater. 4, 6874 (2004).
40.Oppelstrup, T., Jefferson, D.R., Bulatov, V.V., and Zepeda-Ruiz, L.A.: SPOCK: Exact Parallel Kinetic Monte-Carlo on 1.5 Million Tasks (ACM Press, 2016); pp. 127130. doi: 10.1145/2901378.2901403.
41.Enrique, R.A. and Bellon, P.: Compositional patterning in systems driven by competing dynamics of different length scale. Phys. Rev. Lett. 84, 2885 (2000).
42.Henkelman, G. and Jónsson, H.: Long time scale kinetic Monte Carlo simulations without lattice approximation and predefined event table. J. Chem. Phys. 115, 9657 (2001).
43.Vernon, L., Kenny, S.D., Smith, R., and Sanville, E.: Growth mechanisms for TiO2 at its rutile (110) surface. Phys. Rev. B 83, (2011).
44.Béland, L.K., Brommer, P., El-Mellouhi, F., Joly, J-F., and Mousseau, N.: Kinetic activation-relaxation technique. Phys. Rev. E 84, (2011).
45.El-Mellouhi, F., Mousseau, N., and Lewis, L.: Kinetic activation-relaxation technique: An off-lattice self-learning kinetic Monte Carlo algorithm. Phys. Rev. B 78, (2008).
46.Marinica, M-C., Willaime, F., and Mousseau, N.: Energy landscape of small clusters of self-interstitial dumbbells in iron. Phys. Rev. B 83, (2011).
47.Xu, L. and Henkelman, G.: Adaptive kinetic Monte Carlo for first-principles accelerated dynamics. J. Chem. Phys. 129, 114104 (2008).
48.Xu, H., Osetsky, Y.N., and Stoller, R.E.: Simulating complex atomistic processes: On-the-fly kinetic Monte Carlo scheme with selective active volumes. Phys. Rev. B 84, (2011).
49.Shim, Y. and Amar, J.: Rigorous synchronous relaxation algorithm for parallel kinetic Monte Carlo simulations of thin film growth. Phys. Rev. B 71, (2005).
50.Shim, Y. and Amar, J.: Semirigorous synchronous sublattice algorithm for parallel kinetic Monte Carlo simulations of thin film growth. Phys. Rev. B 71, (2005).
51.Martínez, E., Marian, J., Kalos, M.H., and Perlado, J.M.: Synchronous parallel kinetic Monte Carlo for continuum diffusion-reaction systems. J. Comput. Phys. 227, 38043823 (2008).
52.Martínez, E., Monasterio, P.R., and Marian, J.: Billion-atom synchronous parallel kinetic Monte Carlo simulations of critical 3D Ising systems. J. Comput. Phys. 230, 13591369 (2011).
53.Nandipati, G. et al.: Parallel kinetic Monte Carlo simulations of Ag(111) island coarsening using a large database. J. Phys.: Condens. Matter 21, 084214 (2009).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed