Skip to main content

Investigation of effect of fullerenol on viscoelasticity properties of human hepatocellular carcinoma by AFM-based creep tests

  • Xinyao Zhu (a1), Zuobin Wang (a2) and Xianping Liu (a1)

Cellular elasticity is frequently measured to investigate the biomechanical effects of drug treatment, diseases, and aging. In light of the cellular viscosity property exhibited by filament actin networks, this study investigates the viscoelasticity alterations of the human hepatocellular carcinoma (SMMC-7721) cell subjected to fullerenol treatment by means of creep tests realized by atomic force microscopy indentation. An SMMC-7721 cell was first modeled as a sphere and then as a flattened layer with finite thickness. Both Sneddon’s solutions and the Dimitriadis model have been modified to adapt to the viscoelastic situation, which are used to fit the same indentation depth–time curves obtained by creep tests. We find that the SMMC-7721 cell’s creep behavior is well described by the two modified models and the divergence of parameters determined by the two models is justified. By fullerenol treatment, the SMMC-7721 cell exhibits a significant decrease of elastic modulus and viscosity, which is presumably due to the disruption of actin filaments. This work represents a new attempt to understand the alternation of the viscoelastic properties of cancerous cells under the treatment of fullerenol, which has the significance of comprehensively elucidating the biomechanical effects of anticancer agents (such as fullerenol) on cancer cells.

Corresponding author
a) Address all correspondence to this author. e-mail:
Hide All

Contributing Editor: Jinju Chen

Hide All
1. Chen Z., Ma L., Liu Y., and Chen C.: Applications of functionalized fullerenes in tumor theranostics. Theranostics 2, 238 (2012).
2. Partha R. and Conyers J.L.: Biomedical applications of functionalized fullerene-based nanomaterials. Int. J. Nanomed. 4, 261 (2009).
3. Bosi S., Da R.T., Spalluto G., and Prato M.: Fullerene derivatives: An attractive tool for biological applications. Eur. J. Med. Chem. 38, 913 (2003).
4. Li J., Takeuchi A., Ozawa M., Li X.H., Saigo K., and Kitazawa K.: C-60 fullerol formation catalyzed by quaternary ammonium hydroxides. J. Chem. Soc., Chem. Commun. 23, 1784 (1993).
5. Jin J., Dong Y., Wang Y., Xia L., and Gu W.: Fullerenol Nanoparticles with structural activity induce variable intracellular actin filament morphologies. J. Biomed. Nanotechnol. 12, 1234 (2016).
6. Zhou Y.T., Guy G.R., and Low B.C.: BNIP-Sa induces cell rounding and apoptosis by displacing p50RhoGAP and facilitating RhoA activation via its unique motifs in the BNIP-2 and Cdc42GAP homology domain. Oncogene 25, 2393 (2006).
7. Johnson-Lyles D.N., Peifley K., Lockett S., Neun B.W., Hansen M., Clogston J., Stern S.T., and McNeil S.E.: Fullerenol cytotoxicity in kidney cells is associated with cytoskeleton disruption, autophagic vacuole accumulation, and mitochondrial dysfunction. Toxicol. Appl. Pharmacol. 248, 249 (2010).
8. Zhu J.D., Ji Z.Q., W J., Sun R.H., Zhang X., Gao Y., Sun H., Liu Y., Wang Z., Li A., Ma J., Wang T., Jia G., and Gu Y.: Tumor-inhibitory effect and immunomodulatory activity of fullerol C60(OH) x . Small. 4, 1168 (2008).
9. Lu L.H., Lee Y.T., Chen H.W., Long Y.C., and Huang H.C.: The possible mechanisms of the antiproliferative effect of fullerenol, polyhydroxylated C60, on vascular smooth muscle cells. Br. J. Pharmacol. 123, 1097 (1998).
10. Paraskar A., Soni S., Mashelkar R.A., and Sengupta S.: Fullerenol–cytotoxic conjugates for cancer chemotherapy. ACS Nano 3, 2505 (2009).
11. Iyer S., Gaikwad R.M., Subba Rao V., Woodworth C.D., and Sokolov I.: Atomic force microscopy detects differences in the surface brush of normal and cancerous cells. Nat. Nanotechnol. 4, 389 (2009).
12. Hawkins T., Mirigian M., Yasar M.S., and Ross J.L.: Mechanics of microtubules. J. Biomech. 43, 23 (2010).
13. Mrdanović J., Solajić S., Bogdanović V., Stankov K., Bogdanovicć G., and Djordjevic A.: Effects of fullerenol C60(OH)24 on the frequency of micronuclei and chromosome aberrations in CHO-K1 cells. Mutat. Res., Genet. Toxicol. Environ. Mutagen. 680, 25 (1999).
14. Siamantouras E., Hills C.E., Younis M.Y., Squire P.E., and Liu K.K.: Quantitative investigation of calcimimetic R568 on beta cell adhesion and mechanics using AFM single-cell force spectroscopy. FEBS Lett. 588, 1178 (2014).
15. Thomas G., Burnham N.A., Camesano T.A., and Wen Q.: Measuring the mechanical properties of living cells using atomic force microscopy. J. Visualized Exp. 76, e50497 (2013).
16. Rianna C. and Radmacher M.: Cell mechanics as a marker for diseases: Biomedical applications of AFM. AIP Conf. Proc. 1760, 020057 (2016).
17. Starodubtseva M.N.: Mechanical properties of cells and ageing. Ageing Res. Rev. 10, 16 (2011).
18. Mahaffy R.E., Park S., Gerde E., Käs J., and Shih C.K.: Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy. Biophys. J. 86, 1777 (2004).
19. Bremmell K.E., Evans A., and Prestidge C.A.: Deformation and nano-rheology of red blood cells: An AFM investigation. Colloids Surf., B 50, 43 (2006).
20. Zhao M. and Srinivasan C.: Rate- and depth-dependent nanomechanical behavior of individual living Chinese hamster ovary cells probed by atomic force microscopy. J. Mater. Res. 21, 1906 (2006).
21. Li Q.S., Lee G.Y.H., Ong C.N., and Lim C.T.: AFM indentation study of breast cancer cells. Biochem. Biophys. Res. Commun. 374, 609 (2008).
22. Darling E.M., Zauscher S., and Guilak F.: Viscoelastic properties of zonal articular chondrocytes measured by atomic force microscopy. Osteoarthritis Cartilage 14, 571 (2006).
23. Koay E.J., Shieh A.C., and Athanasiou K.A.: Creep indentation of single cells. J. Biomech. Eng. 125, 334 (2003).
24. Leipzig N.D. and Athanasiou K.A.: Unconfined creep compression of chondrocytes. J. Biomech. 38, 77 (2005).
25. Palmer A., Mason T.G., Xu J., Kuo S.C., and Wirtz D.: Diffusing wave spectroscopy microscopy of actin filament networks. Biophys. J. 76, 1063 (1999).
26. Ketene A.N., Roberts P.C., Shea A.A., Schmelz E.M., and Agah M.: Actin filaments play a primary role for structural integrity and viscoelastic response in cells. Integr. Biol. 4, 540 (2012).
27. Ngan A.H.W. and Tang B.: Response of power-law-viscoelastic and time-dependent materials to rate jumps. J. Mater. Res. 24, 853 (2009).
28. Tang B. and Ngan A.H.W.: Nanoindentation using an atomic force microscope. Philos. Mag. 91, 1329 (2011).
29. Tang B. and Ngan A.H.W.: Investigation of viscoelastic properties of amorphous selenium near glass transition using depth-sensing indentation. Soft Mater. 2, 125 (2004).
30. Dimitriadis E.K., Horkay F., Maresca J., Kachar B., and Chadwick R.S.: Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys. J. 82, 2798 (2002).
31. Zhu X.Y., Zhang N., Wang Z.B., and Liu X.P.: Investigation of work of adhesion of biological cell (human hepatocellular carcinoma) by AFM nanoindentation. J. Micro-Bio Rob. 11, 47 (2016).
32. Neumann T.: Determining the elastic modulus of biological samples using atomic force microscopy. JPK Instruments Application Report (2008).
33. Liu Y., Wang Z.B., and Wang X.Y.: AFM-based study of fullerenol (C60(OH)24)-induced changes of elasticity in living SMCC-7721 cells. J. Mech. Behav. Biomed. Mater. 45, 65 (2015).
34. King R.B.: Elastic analysis of some punch problems for a layered medium. Int. J. Solids Struct. 23, 1657 (1987).
35. Antunes J.M., Menezes L.F., and Fernandes J.V.: Three-dimensional numerical simulation of Vickers indentation tests. Int. J. Solids Struct. 43, 784 (2006).
36. Ward I.M. and Hadley D.W.: An introduction to the mechanical properties of solid polymers, 2nd ed. (John Wiley & Sons Ltd, New York, 1993).
37. Findley W.N., Lai J.S., and Onaran K.: Creep and Relaxation of Nonlinear Viscoelastic Materials with an Introduction to Linear Viscoelasticity, 3rd ed. (Dover Publications, Inc, New York, 1989).
38. Hills C.E., Younis M.Y., Bennett J., Siamantouras E., Liu K.K., and Squires P.E.: Calcium-sensing receptor activation increases cell–cell adhesion and β-cell function. Cell. Physiol. Biochem. 30, 575 (2012).
39. Chen J.: Nanobiomechanics of living cells: A review. J. R. Soc., Interface 4, 20130055 (2014).
40. Sneddon I.N.: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).
41. Lee E.H. and Radok J.R.M.: The contact problem for viscoelastic bodies. J. Appl. Mech. 27, 438 (1960).
42. Ting T.C.T.: The contact stresses between a rigid indenter and a viscoelastic half-space. J. Appl. Mech. 33, 845 (1966).
43. Yu H.L., Li Z., and Wang Q.J.: Viscoelastic-adhesive contact modeling: Application to the characterization of the viscoelastic behavior of materials. Mech. Mater. 60, 55 (2013).
44. Chen J. and Lu G.: Finite element modelling of nanoindentation based methods for mechanical properties of cells. J. Biomech. 45, 2810 (2012).
45. Chen J.: Understanding the nanoindentation mechanisms of a microsphere for biomedical applications. J. Phys. D: Appl. Phys. 46, 495303 (2013).
46. Sanchez-Adams J., Wilusz R.E., and Guilak F.: Atomic force microscopy reveals regional variations in the micromechanical properties of the pericellular and extracellular matrices of the meniscus. J. Orthop. Res. 31, 1218 (2013).
47. Gavara N. and Chadwick R.S.: Determination of the elastic moduli of thin samples and adherent cells using conical atomic force microscope tips. Nat. Nanotechnol. 7, 733 (2012).
48. Vadillo-Rodriguez V., Beveridge T.J., and Dutcher J.R.: Surface viscoelasticity of individual Gram-negative bacterial cells measured using atomic force microscopy. J. Bacteriol. 190, 4225 (2008).
49. Zhou Z.L., Ngan A.H.W., Tang B., and Wang A.X.: Reliable measurement of elastic modulus of cells by nanoindentation in an atomic force microscope. J. Mech. Behav. Biomed. Mater. 8, 134 (2012).
50. Sirghi L., Ponti J., Broggi F., and Rossi F.: Probing elasticity and adhesion of live cells by atomic force microscopy indentation. Eur. Biophys. J. 37, 935 (2008).
51. Zhu X.Y., Siamantouras E., Liu K.K., and Liu X.P.: Determination of work of adhesion of biological cell under AFM bead indentation. J. Mech. Behav. Biomed. Mater. 56, 77 (2015).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 20
Total number of PDF views: 63 *
Loading metrics...

Abstract views

Total abstract views: 217 *
Loading metrics...

* Views captured on Cambridge Core between 19th June 2017 - 19th January 2018. This data will be updated every 24 hours.