Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-24T02:40:50.040Z Has data issue: false hasContentIssue false

Investigation of grafted mesoporous silicon sponge using hyperpolarized 129Xe NMR spectroscopy

Published online by Cambridge University Press:  19 July 2018

Yougang Mao
Affiliation:
Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
Dokyoung Kim*
Affiliation:
Department of Anatomy and Neurobiology, Kyung Hee University, Seoul 02447, Republic of Korea; and Center for Converging Humanities, Kyung Hee University, Seoul 02447, Republic of Korea
Russell Hopson
Affiliation:
Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
Michael J. Sailor
Affiliation:
Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, USA
Li-Qiong Wang*
Affiliation:
Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
*
a)Address all correspondence to these authors. e-mail: dkim@khu.ac.kr
Get access

Abstract

Temperature-dependent (173–373 K) hyperpolarized 129Xe nuclear magnetic resonance (129Xe NMR) analyses along with transmission electron microscopy and N2 adsorption measurements have been applied to understand pore structure and interconnectivity of bare and grafted mesoporous silicon sponge (MSS) materials. The Xe NMR chemical shift data indicate the existence of micropores inside the larger mesopore channels and the effects of grafting on the pore surfaces. The grafted layer estimated at 2 nm in thickness blocks the micropores on the surfaces of mesoporous channels. Partitioning of Xe between the micropores and the mesopores in the MSS materials is temperature-dependent, with Xe principally occupying the micropores at lower temperatures. In addition, the temperature-dependent Xe peak shift of MSS materials verifies the increased uniformity and interconnectivity of mesopores after surface grafting. The results from this study provide useful information for design and development of novel materials.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Armand, M. and Tarascon, J.M.: Building better batteries. Nature 451, 652657 (2008).CrossRefGoogle ScholarPubMed
Whittingham, M.S.: Materials challenges facing electrical energy storage. MRS Bull. 33, 411419 (2011).CrossRefGoogle Scholar
Smith, A.J., Burns, J.C., Zhao, X., Xiong, D., and Dahn, J.R.: A high precision coulometry study of the SEI growth in Li/graphite cells. J. Electrochem. Soc. 158, A447A452 (2011).CrossRefGoogle Scholar
Oumellal, Y., Delpuech, N., Mazouzi, D., Dupre, N., Gaubicher, J., Moreau, P., Soudan, P., Lestriez, B., and Guyomard, D.: The failure mechanism of nano-sized Si-based negative electrodes for lithium ion batteries. J. Mater. Chem. 21, 62016208 (2011).CrossRefGoogle Scholar
Holzapfel, M., Buqa, H., Krumeich, F., Novák, P., Petrat, F-M., and Veit, C.: Chemical vapor deposited silicon/graphite compound material as negative electrode for lithium-ion batteries. Electrochem. Solid-State Lett. 8, A516A520 (2005).CrossRefGoogle Scholar
Obrovac, M.N. and Krause, L.J.: Reversible cycling of crystalline silicon powder. J. Electrochem. Soc. 154, A103A108 (2007).CrossRefGoogle Scholar
Park, O.K., Cho, Y., Lee, S., Yoo, H-C., Song, H-K., and Cho, J.: Who will drive electric vehicles, olivine or spinel? Energy Environ. Sci. 4, 16211633 (2011).CrossRefGoogle Scholar
Smith, A.J., Dahn, H.M., Burns, J.C., and Dahn, J.R.: Long-term low-rate cycling of LiCoO2/graphite Li-ion cells at 55 °C. J. Electrochem. Soc. 159, A705A710 (2012).CrossRefGoogle Scholar
Kasavajjula, U., Wang, C., and Appleby, A.J.: Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources 163, 10031039 (2007).CrossRefGoogle Scholar
Zhang, W-J.: A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources 196, 1324 (2011).CrossRefGoogle Scholar
Liu, X.H., Zhong, L., Huang, S., Mao, S.X., Zhu, T., and Huang, J.Y.: Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6, 15221531 (2012).CrossRefGoogle ScholarPubMed
McDowell, M.T., Ryu, I., Lee, S.W., Wang, C., Nix, W.D., and Cui, Y.: Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy. Adv. Mater. 24, 60346041 (2012).CrossRefGoogle ScholarPubMed
Gu, M., Li, Y., Li, X., Hu, S., Zhang, X., Xu, W., Thevuthasan, S., Baer, D.R., Zhang, J-G., Liu, J., and Wang, C.: In situ TEM study of lithiation behavior of silicon nanoparticles attached to and embedded in a carbon matrix. ACS Nano 6, 84398447 (2012).CrossRefGoogle Scholar
Li, X., Gu, M., Hu, S., Kennard, R., Yan, P., Chen, X., Wang, C., Sailor, M.J., Zhang, J-G., and Liu, J.: Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nat. Commun. 5, 4105 (2014).CrossRefGoogle ScholarPubMed
Kim, D., Joo, J., Pan, Y., Boarino, A., Jun, Y.W., Ahn, K.H., Arkles, B., and Sailor, M.J.: Thermally induced silane dehydrocoupling on silicon nanostructures. Angew. Chem., Int. Ed. 55, 64236427 (2016).CrossRefGoogle ScholarPubMed
Moudrakovski, I.L., Terskikh, V.V., Ratcliffe, C.I., Ripmeester, J.A., Wang, L-Q., Shin, Y., and Exarhos, G.J.: A 129Xe NMR study of functionalized ordered mesoporous silica. J. Phys. Chem. B 106, 59385946 (2002).CrossRefGoogle Scholar
Ripmeester, J.A.: Nuclear shielding of trapped xenon obtained by proton-enhanced, magic-angle spinning xenon-129 NMR spectroscopy. J. Am. Chem. Soc. 104, 289290 (1982).CrossRefGoogle Scholar
Ito, T. and Fraissard, J.: 129Xe NMR study of xenon adsorbed on Y zeolites. J. Chem. Phys. 76, 52255229 (1982).CrossRefGoogle Scholar
Ratcliffe, C.I.: Xenon NMR. Annu. Rep. NMR Spectrosc. 36, 123221 (1998).Google Scholar
Grover, B.C.: Noble-gas NMR detection through noble-gas-rubidium hyperfine contact interaction. Phys. Rev. Lett. 40, 391392 (1978).CrossRefGoogle Scholar
Happer, W., Miron, E., Schaefer, S., Schreiber, D., van Wijngaarden, W.A., and Zeng, X.: Polarization of the nuclear spins of noble-gas atoms by spin exchange with optically pumped alkali-metal atoms. Phys. Rev. A 29, 30923110 (1984).CrossRefGoogle Scholar
Driehuys, B., Cates, G.D., Miron, E., Sauer, K., Walter, D.K., and Happer, W.: High-volume production of laser-polarized 129Xe. Appl. Phys. Lett. 69, 16681670 (1996).CrossRefGoogle Scholar
Ruset, I.C., Ketel, S., and Hersman, F.W.: Optical pumping system design for large production of hyperpolarized 129Xe. Phys. Rev. Lett. 96, 053002 (2006).CrossRefGoogle Scholar
Knagge, K., Smith, J.R., Smith, L.J., Buriak, J., and Raftery, D.: Analysis of porosity in porous silicon using hyperpolarized 129Xe two-dimensional exchange experiments. Solid State Nucl. Magn. Reson. 29, 8589 (2006).CrossRefGoogle ScholarPubMed
Terskikh, V.V., Mudrakovskii, I.L., and Mastikhin, V.M.: 129Xe nuclear magnetic resonance studies of the porous structure of silica gels. J. Chem. Soc., Faraday Trans. 89, 42394243 (1993).CrossRefGoogle Scholar
Ripmeester, J.A. and Ratcliffe, C.I.: Application of xenon-129 NMR to the study of microporous solids. J. Phys. Chem. 94, 76527656 (1990).CrossRefGoogle Scholar
Terskikh, V.V., Moudrakovski, I.L., Breeze, S.R., Lang, S., Ratcliffe, C.I., Ripmeester, J.A., and Sayari, A.: A general correlation for the 129Xe NMR chemical shift–pore size relationship in porous silica-based materials. Langmuir 18, 56535656 (2002).CrossRefGoogle Scholar
Wang, L-Q., Wang, D., Liu, J., Exarhos, G.J., Pawsey, S., and Moudrakovski, I.: Probing porosity and pore interconnectivity in crystalline mesoporous TiO2 using hyperpolarized 129Xe NMR. J. Phys. Chem. C 113, 65776583 (2009).CrossRefGoogle Scholar
Mao, Y., Song, M., Hopson, R., Karan, N.K., Guduru, P.R., and Wang, L-Q.: Hyperpolarized 129Xe nuclear magnetic resonance studies of Si nanocomposite electrode materials. Energy Fuels 30, 14701476 (2016).Google Scholar
Sailor, M.J.: Porous Silicon in Practice: Preparation, Characterization, and Applications (Wiley-VCH, Weinheim, Germany, 2012); p. 249.Google Scholar
Qin, Z., Joo, J., Gu, L., and Sailor, M.J.: Size control of porous silicon nanoparticles by electrochemical perforation etching. Part. Part. Syst. Charact. 31, 252256 (2014).CrossRefGoogle Scholar
Mao, Y., Kim, D., Joo, J., Sailor, M.J., Hopson, R., and Wang, L-Q.: Hyperpolarized 129Xe nuclear magnetic resonance study of mesoporous silicon sponge materials. J. Mater. Res. 32, 30383045 (2017).CrossRefGoogle Scholar
Sears, D.N., Wasylishen, R.E., and Ueda, T.: Grand canonical monte carlo simulations of the 129Xe NMR line shapes of xenon adsorbed in (±)-[Co(en)3]Cl3. J. Phys. Chem. B 110, 1112011127 (2006).CrossRefGoogle ScholarPubMed