Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-29T21:37:20.759Z Has data issue: false hasContentIssue false

Investigation of growth conditions of fibrous deposits in carbon arc

Published online by Cambridge University Press:  31 January 2011

P. Byszewski
Affiliation:
Institute of Vacuum Technology, Długa 44/50, 00–241 Warsaw, and Institute of Physics, PAN, al. Lotników 32/46, 02-668 Warsaw, Poland
K. Ukalski
Affiliation:
Institute of Vacuum Technology, Długa 44/50, 00–241 Warsaw, Poland
E. Mizera
Affiliation:
Institute of Physics, PAN, al. Lotników 32/46, 02–668 Warsaw, Poland
E. Kowalska
Affiliation:
Institute of Vacuum Technology, Długa 44/50, 00–241 Warsaw, Poland
Get access

Abstract

Carbon fibrous deposits grown in carbon dc electric arc at various buffer gas pressures and arc currents were investigated by transmission and scanning electron microscopy. The fibers contained in the deposits consisted of bundles of carbon tubes. It was found that yield and morphology were very sensitive to both parameters; sintering of the tubes could be prevented by adjusting buffer gas pressure for a given current. It is argued that these parameters control expansion of carbon gas and condensation rate, and therefore energy flow to the cathode. To purify samples by oxidation and to observe differences in resistance against oxidation of samples obtained at various conditions, the thermogravimetry method was used.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Iijima, S., Nature (London) 354, 56 (1991); S. Iijima and T. Ichihasii, Nature (London) 363, 603 (1993).CrossRefGoogle Scholar
2.Bacon, R., J. Appl. Phys. 11, 283 (1960).CrossRefGoogle Scholar
3.Ebbesen, T., Ajyan, P. M., Nature (London) 358, 220 (1992).CrossRefGoogle Scholar
4.Smalley, R. E., Mater. Sci. Eng. B19, (1993).Google Scholar
5.Endo, M., Takeuchi, K., Igarashi, S., Kobori, K., Shiraishi, M., and Kroto, H. W., J. Phys. Chem. Solids 54, 1841 (1993).CrossRefGoogle Scholar
6.Brabec, C. J., Maiti, A., Roland, C., and Bernholc, J., Chem. Phys. Lett. 236, 150 (1995).CrossRefGoogle Scholar
7.Saito, Y., Yochikawa, T., and Inagakii, M., Chem. Phys. Lett. 204, 277 (1993).CrossRefGoogle Scholar
8. Yu. Lozovik, E. and Popov, A. M., Phys. Lett. A189, 127130 (1994).CrossRefGoogle Scholar
9.Colbert, D. T., Zhang, J., McClure, S. M., Nikolaev, P., Chen, Z., Hafner, J. H., Owens, D. W., Kotula, P. G., Carter, C. B., Weaver, J. H., Rinzler, A. G., and Smalley, R. E., Science 266, 1218 (1994).CrossRefGoogle Scholar
10.Byszewski, P., Ukalski, K., Baran, M., Dłużewski, P., and Kozłowski, M., Acta Phys. Pol. A87, 885 (1995).CrossRefGoogle Scholar
11.Wang, X. K., Chang, R. P. H., Patashinski, A., and Ketterson, J. B., J. Mater. Res. 9, 1578 (1994).CrossRefGoogle Scholar
12.Wang, X. K., Lin, X. W., Dravid, V. P., Ketterson, J. B., and Chang, R. P. H., Appl. Phys. Lett. 62 (196), 1881 (1993).CrossRefGoogle Scholar
13.Kosaka, M., Ebbesen, T. W., Hiura, H., and Tankigaki, K., Chem. Phys. Lett. 225, 161 (1994); 233, 47 (1995).CrossRefGoogle Scholar
14.Byszewski, P., Dłużewski, P., and Diduszko, R., J. Mater. Res. 8, 118 (1993).CrossRefGoogle Scholar
15.Zhou, O., Fleming, R. M., Murphy, D. W., Chen, C. H., Haddon, R. C., Ramirez, A. P., and Glarum, S. H., Science 263, 1744 (1994).CrossRefGoogle Scholar
16.Kelly, B. T., Physics of Graphite (Applied Science Publishers, London and New Jersey, 1981).Google Scholar
17.Byszewski, P. and Nabiałek, A., unpublished.Google Scholar
18.Wagoner, G., Phys. Rev. 118, 647 (1960); L. S. Singer and G. Wagoner, J. Chem. Phys. 37, 1812 (1962).CrossRefGoogle Scholar
19.Tanaka, K., Sato, T., Yamabe, T., Okahara, K., Uchida, K., Yumura, M., Niino, H., Ohshima, S., Kuriki, Y., Yase, K., and Ikazaki, F., Chem. Phys. Lett. 233, 65 (1994).CrossRefGoogle Scholar