Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-16T17:13:34.743Z Has data issue: false hasContentIssue false

Investigation of nitrogen-doped TiO2 thin films grown by reactive pulsed laser deposition

Published online by Cambridge University Press:  31 January 2011

G. Sauthier
Affiliation:
Consejo Superior de Investigaciones Cientificas, Instituto de Ciencia de Materiales de Barcelona, (ICMAB-CSIC), Centre d’Investigacions en Nanociència i Nanotecnologia, (CIN2-CSIC), Campus UAB, 08193 Bellaterra, Spain
E. György*
Affiliation:
Consejo Superior de Investigaciones Cientificas, Instituto de Ciencia de Materiales de Barcelona, (ICMAB-CSIC), Centre d’Investigacions en Nanociència i Nanotecnologia, (CIN2-CSIC), Campus UAB, 08193 Bellaterra, Spain; and National Institute for Lasers, Plasma and Radiations Physics, 77125 Bucharest, Romania
A. Figueras
Affiliation:
Consejo Superior de Investigaciones Cientificas, Centre d’Investigacions en Nanociència i Nanotecnologia, (CIN2-CSIC), Campus UAB, 08193 Bellaterra, Spain
*
a)Address all correspondence to this author. e-mail: egyorgy@icmab.es
Get access

Abstract

Nitrogen-doped titanium dioxide (TiO2) thin films were synthesized on glass substrates by reactive pulsed laser deposition technique (PLD). A frequency quadrupled Nd:YAG (λ = 266 nm, τFWHM ≅ 5 ns, ν = 10 Hz) laser source was used for the irradiations of TiO2 targets. The experiments were performed in controlled reactive atmosphere consisting of mixtures of oxygen and nitrogen gases. We demonstrated that there exists the possibility for the accurate control of the nitrogen incorporation through the growth parameters, i.e., the nitrogen partial pressure in the reaction enclosure. The substitutional nitrogen doping of the anatase phase TiO2 thin films allows for the continuous shift of the optical absorption edge towards the visible spectral range. When a threshold value of the nitrogen dopant level is surpassed the crystallization structure of the TiO2 anatase phase thin films changes, and the onset of a stable titanium-oxinitride phase formation takes place.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Honda, K.Fujishima, A.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 1972Google Scholar
2Hoffmann, M.R., Martin, S.T., Choi, W.Bhanemann, D.W.: Enviromental applications of semiconductor photocatalysis. Chem. Rev. 95, 69 1995CrossRefGoogle Scholar
3Khaselev, O.Turner, J.A.: A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280, 425 1998CrossRefGoogle ScholarPubMed
4Ghosh, A.K.Maruska, H.P.: Photoelectrolysis of water in sunlight with sensitized semiconductor electrodes. J. Electrochem. Soc. 124, 1516 1977CrossRefGoogle Scholar
5Choi, W., Termin, A.Hoffmann, M.R.: The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. 98, 13669 1994CrossRefGoogle Scholar
6Justicia, I., Ordejón, P., Canto, G., Mozos, J.L., Fraxedas, J., Battiston, G.A., Gerbasi, R.Figueras, A.: Designed self-doped titanium oxide thin films for efficient visible-light photocatalysis. Adv. Mater. 14, 1399 20023.0.CO;2-C>CrossRefGoogle Scholar
7Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K.Taga, Y.: Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269 2001CrossRefGoogle ScholarPubMed
8Matsui, H., Tabata, H., Hasuike, N., Harima, H.Mizobuchi, B.: Epitaxial growth and characteristics of N-doped anatase TiO2 films grown using a free-radical nitrogen oxide source. J. Appl. Phys. 97, 123511 2005CrossRefGoogle Scholar
9Suda, Y., Kawasaki, H., Ueda, T.Ohshima, T.: Preparation of high quality nitrogen doped TiO2 thin film as a photocatalyst using a pulsed laser deposition method. Thin Solid Films 453–454, 162 2004CrossRefGoogle Scholar
10Sathish, M., Viswanathan, B., Viswanath, R.P.Gopinath, C.S.: Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst. Chem. Mater. 17, 6349 2005CrossRefGoogle Scholar
11Okato, T., Sakano, T.Obara, M.: Suppression of photocatalytic efficiency in highly N-doped anatase films. Phys. Rev. B 72, 115124 2005CrossRefGoogle Scholar
12Lindgren, T., Mwabora, J.M., Avendano, E., Jonsson, J., Hoel, A., Granqvist, C.G.Lindquist, S.E.: Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering. J. Phys. Chem. B 107, 5709 2003CrossRefGoogle Scholar
13Prokes, S.M., Gole, J.L., Chen, X., Burda, C.Carlos, W.E.: Defect-related optical behavior in surface modified TiO2 nanostructures. Adv. Funct. Mater. 15, 161 2005CrossRefGoogle Scholar
14Murakami, K.: Laser Ablation of Electronic Materials—Basic Mechanisms and Applications edited by E. Fogarassy and S. Lazare Elsevier Amsterdam 1992 125Google Scholar
15Von Allmen, M.Blatter, A.: Laser-Beam Interactions with Materials 2nd ed.Springer-Verlag Berlin 1995CrossRefGoogle Scholar
16Bäuerle, D.: Laser Processing and Chemistry Springer-Verlag Berlin 1996CrossRefGoogle Scholar
17Pulsed Laser Deposition of Thin Films edited by D. G. Chrisey and G. K. Hubler Wiley New York 1994Google Scholar
18Mihailescu, I.N.György, E.: Trends in Optics and Photonics edited by T. Asakura Springer Berlin 1999 201CrossRefGoogle Scholar
19Pulsed Laser Deposition of Thin Films, edited by R. Eason Wiley Hoboken, New Jersey 2006Google Scholar
20Xu, P., Mi, L.Wang, P.N.: Improved optical response for N-doped anatase TiO2 films prepared by pulsed laser deposition in N2/NH3/O2 mixture. J. Cryst. Growth 289, 433 2006CrossRefGoogle Scholar
21Suda, Y., Kawasaki, H., Ueda, T.Ohshima, T.: Preparation of high quality nitrogen doped TiO2 thin films as a photocatalyst using a pulsed laser deposition method. Thin Solid Films 453–454, 162 2004CrossRefGoogle Scholar
22JCPDS No. 21-1272 and No. 44-0951. International Center for Diffraction Data Newton Square, PA 1994Google Scholar
23Saha, N.C.Tompkins, H.G.: Titanium nitride oxidation chemistry: An x-ray photoelectron spectroscopy study. J. Appl. Phys. 72, 3072 1992CrossRefGoogle Scholar
24Prieto, P.Kirby, R.E.: X-ray photoelectron spectroscopy study of the difference between reactively evaporated and direct sputter-deposited TiN films and their oxidation properties. J. Vac. Sci. Technol., A 13, 2819 1995CrossRefGoogle Scholar
25Esaka, F., Furuya, K., Shimada, H., Imamura, M., Matsubayashi, N., Sato, H., Nishijima, A., Kawana, A., Ichimura, H.Kikuchi, T.: Comparison of surface oxidation of titanium nitride and chromium nitride films studied by x-ray absorption and photoelectron spectroscopy. J. Vac. Sci. Technol., A 15, 2521 1997CrossRefGoogle Scholar
26Gole, J.L., Stout, J.D., Burda, C., Lou, Y.Chen, X.: Highly efficient formation of visible light tunable TiO2–xNx photocatalysts and their transformation at the nanoscale. J. Phys. Chem. B 108, 1230 2004CrossRefGoogle Scholar
27Chen, X.Burda, C.: Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles. J. Phys. Chem. B 108, 15446 2004CrossRefGoogle Scholar
28Miao, L., Tanemura, S., Watanabe, H., Mori, Y., Kaneko, K.Ton, S.: The improvement of optical reactivity for TiO2 thin films by N2–H2 plasma surface-treatment. J. Cryst. Growth 260, 118 2004CrossRefGoogle Scholar