Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 28
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Ghosh, Tapas Samanta, Bidyut Jana, Paresh Chandra and Ganguly, Pranabendu 2015. Comparison of calculated and measured refractive index profiles of continuous wave ultravoilet written waveguides in LiNbO3 and its analysis by effective index based matrix method. Journal of Applied Physics, Vol. 117, Issue. 5, p. 053106.

    Rahn, J. Heitjans, P. and Schmidt, H. 2015. Li Self-Diffusivities in Lithium Niobate Single Crystals as a Function of Li2O Content. The Journal of Physical Chemistry C, Vol. 119, Issue. 27, p. 15557.

    Yatsenko, A. V. Palatnikov, M. N. Makarova, O. V. Sidorov, N. V. and Yevdokimov, S. V. 2015. Electrical Properties of LiTaO3Single Crystals at 290–450 K. Ferroelectrics, Vol. 477, Issue. 1, p. 47.

    Hüger, E. Rahn, J. Stahn, J. Geue, T. Heitjans, P. and Schmidt, H. 2014. Lithium diffusion in congruent LiNbO3 single crystals at low temperatures probed by neutron reflectometry. Physical Chemistry Chemical Physics, Vol. 16, Issue. 8, p. 3670.

    Shi, Jianmin Fritze, Holger Weidenfelder, Anke Swanson, Claudia Fielitz, Peter Borchardt, Günter and Becker, Klaus-Dieter 2014. Optical absorption of electronic defects and chemical diffusion in vapor transport equilibrated lithium niobate at high temperatures. Solid State Ionics, Vol. 262, p. 904.

    Ying, C. Y. J. Daniell, G. J. Steigerwald, H. Soergel, E. and Mailis, S. 2013. Pyroelectric field assisted ion migration induced by ultraviolet laser irradiation and its impact on ferroelectric domain inversion in lithium niobate crystals. Journal of Applied Physics, Vol. 114, Issue. 8, p. 083101.

    Rahn, Johanna Hüger, Erwin Dörrer, Lars Ruprecht, Benjamin Heitjans, Paul and Schmidt, Harald 2012. Self-Diffusion of Lithium in Amorphous Lithium Niobate Layers. Zeitschrift für Physikalische Chemie, Vol. 226, Issue. 5-6, p. 439.

    Rahn, J. Hüger, E. Dörrer, L. Ruprecht, B. Heitjans, P. and Schmidt, H. 2012. Li self-diffusion in lithium niobate single crystals at low temperatures. Physical Chemistry Chemical Physics, Vol. 14, Issue. 7, p. 2427.

    Ruprecht, Benjamin Rahn, Johanna Schmidt, Harald and Heitjans, Paul 2012. Low-Temperature DC Conductivity of LiNbO3Single Crystals. Zeitschrift für Physikalische Chemie, Vol. 226, Issue. 5-6, p. 431.

    Weidenfelder, A. Shi, J. Fielitz, P. Borchardt, G. Becker, K.D. and Fritze, H. 2012. Electrical and electromechanical properties of stoichiometric lithium niobate at high-temperatures. Solid State Ionics, Vol. 225, p. 26.

    Weidenfelder, Anke Fritze, Holger Fielitz, Peter Borchardt, Günter Shi, Jianmin Becker, Klaus-Dieter and Ganschow, Steffen 2012. Transport and Electromechanical Properties of Stoichiometric Lithium Niobate at High Temperatures. Zeitschrift für Physikalische Chemie, Vol. 226, Issue. 5-6, p. 421.

    Ying, C.Y.J. Muir, A.C. Valdivia, C.E. Steigerwald, H. Sones, C.L. Eason, R.W. Soergel, E. and Mailis, S. 2012. Light-mediated ferroelectric domain engineering and micro-structuring of lithium niobate crystals. Laser & Photonics Reviews, Vol. 6, Issue. 4, p. 526.

    Shi, Jianmin Fritze, Holger Borchardt, Günter and Becker, Klaus-Dieter 2011. Defect chemistry, redox kinetics, and chemical diffusion of lithium deficient lithium niobate. Physical Chemistry Chemical Physics, Vol. 13, Issue. 15, p. 6925.

    Steigerwald, H. Lilienblum, M. von Cube, F. Ying, Y. J. Eason, R. W. Mailis, S. Sturman, B. Soergel, E. and Buse, K. 2010. Origin of UV-induced poling inhibition in lithium niobate crystals. Physical Review B, Vol. 82, Issue. 21,

    Xu, Haixuan Lee, Donghwa Sinnott, Susan B Dierolf, Volkmar Gopalan, Venkatraman and Phillpot, Simon R 2010. Structure and diffusion of intrinsic defect complexes in LiNbO3from density functional theory calculations. Journal of Physics: Condensed Matter, Vol. 22, Issue. 13, p. 135002.

    Xu, Haixuan Lee, Donghwa Sinnott, Susan B. Gopalan, Venkatraman Dierolf, Volkmar and Phillpot, Simon R. 2009. Structure and energetics of Er defects inLiNbO3from first-principles and thermodynamic calculations. Physical Review B, Vol. 80, Issue. 14,

    Fielitz, Peter Borchardt, Günter De Souza, Roger A. Martin, Manfred Masoud, Muayad and Heitjans, Paul 2008. Oxygen-18 surface exchange and diffusion in Li2O-deficient single crystalline lithium niobate. Solid State Sciences, Vol. 10, Issue. 6, p. 746.

    Simões, A.Z González, A.H.M Cavalheiro, A.A Zaghete, M.A Stojanovic, B.D and Varela, J.A 2002. Effect of magnesium on structure and properties of LiNbO3 prepared from polymeric precursors. Ceramics International, Vol. 28, Issue. 3, p. 265.

    Yoo, H.-I. and Yang, S.-J. 2001. Open-Circuit Potential of an Oxygen Concentration Cell Involving a Ternary Oxide. Journal of The Electrochemical Society, Vol. 148, Issue. 6, p. A642.

    Hsieh, Chao Ray Lin, Shiuan Huei Hsu, Ken Y. Hsieh, Tai Chiung Chiou, Arthur and Hong, John 1999. Optimal conditions for thermal fixing of volume holograms in Fe:LiNbO_3 crystals. Applied Optics, Vol. 38, Issue. 29, p. 6141.


Ionic transport in LiNbO3

  • Apurva Mehta (a1), Edward K. Chang (a1) and Donald M. Smyth (a1)
  • DOI:
  • Published online: 01 January 2011

The high temperature equilibrium conductivity (950 °C–1050 °C) of congruent LiNbO3 can be resolved into two components: an electronic portion that is dependent on the oxygen partial pressure and an ionic portion that is pressure independent. It is shown that the two components can be obtained from an analysis of the total equilibrium conductivity measured as a function of oxygen partial pressure. The ionic transport number (fractional ionic conductivity) thus obtained is compared with that obtained from an oxygen concentration cell measurement. The two techniques are found to be in excellent agreement, confirming the experimental validity of the defect chemistry method. From the temperature dependence of the ionic conductivity, the activation energy (138 kJ/mol [1.43 eV]) for the ionic transport is obtained. The results are in good agreement with the value previously obtained for the oxygen chemical diffusivity.

Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1H. Fay , W. J. Alford , and H. M. Dess , Appl. Phys. Lett. 12, 89 (1968).

2P. Lerner , C. Legras , and J. P. Duman , J. Cryst. Growth 3/4, 231 (1968).

6P. J. Jorgensen and R. W. Bartlett , J. Phys. Chem. Solids 30, 2639 (1969).

7G. Bergmann , Solid State Commun. 6, 77 (1968).

8Y. Limb , K. W. Cheng , and D. M. Smyth , Ferroelectrics 38, 813 (1981).

12G. E. Peterson and A. Carnevale , J. Chem. Phys. 56, 4848 (1972).

13R. J. Holmes and D. M. Smyth , J. Appl. Phys. 55 (10), 3531 (1984).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *