Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T12:11:48.928Z Has data issue: false hasContentIssue false

Irradiation responses and defect behavior of single-phase concentrated solid solution alloys

Published online by Cambridge University Press:  10 September 2018

Tengfei Yang
Affiliation:
Department of Nuclear Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
Congyi Li
Affiliation:
Department of Nuclear Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
Steven J. Zinkle*
Affiliation:
Department of Nuclear Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA; and Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
Shijun Zhao
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
Hongbin Bei
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
Yanwen Zhang
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA; and Department of Nuclear Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
*
a)Address all correspondence to this author. e-mail: szinkle@utk.edu
Get access

Abstract

Single-phase concentrated solid solution alloys (SP-CSAs) are newly emerging advanced structural materials, which are defined as multiprincipal element solid solutions. SP-CSAs with more than four components in equimolar or near-equimolar ratios are also referred to as high-entropy alloys due to their high configurational entropy. SP-CSAs are potential structural materials in advanced nuclear energy systems due to their attractive mechanical properties. Therefore many investigations have been carried out to study the irradiation-induced structural damage and defect behavior in SP-CSAs. This paper reviews recent experimental results on the irradiation responses of various SP-CSAs, focusing on the accumulation of irradiation-induced structural damage, void swelling resistance, and solute segregation behavior. In addition, the characteristic defect behavior in SP-CSAs derived from ab initio and molecular dynamics simulations, as well as the challenges in the applications of SP-CSAs for the nuclear energy systems are briefly discussed.

Type
Invited Review
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

These authors contributed equally to this work.

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

REFERENCES

Chu, S. and Majumdar, A.: Opportunities and challenges for a sustainable energy future. Nature 488, 294 (2012).CrossRefGoogle ScholarPubMed
Guérin, Y., Was, G.S., and Zinkle, S.J.: Materials challenges for advanced nuclear energy systems. MRS Bull. 34, 10 (2009).Google Scholar
Zinkle, S.J. and Was, G.: Materials challenges in nuclear energy. Acta Mater. 61, 735 (2013).CrossRefGoogle Scholar
Odette, G., Alinger, M., and Wirth, B.: Recent developments in irradiation-resistant steels. Annu. Rev. Mater. Res. 38, 471 (2008).CrossRefGoogle Scholar
Allen, T., Burlet, H., Nanstad, R.K., Samaras, M., and Ukai, S.: Advanced structural materials and cladding. MRS Bull. 34, 20 (2009).CrossRefGoogle Scholar
Zinkle, S.J. and Snead, L.L.: Designing radiation resistance in materials for fusion energy. Annu. Rev. Mater. Res. 44, 241 (2014).CrossRefGoogle Scholar
Yvon, P.: Structural Materials for Generation IV Nuclear Reactors (Woodhead Publishing, Kidlington, U.K., 2016); pp. 569586.Google Scholar
Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., and Ritchie, R.O.: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153 (2014).CrossRefGoogle ScholarPubMed
Gludovatz, B., Hohenwarter, A., Thurston, K.V., Bei, H., Wu, Z., George, E.P., and Ritchie, R.O.: Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat. Commun. 7, 10602 (2016).CrossRefGoogle ScholarPubMed
Otto, F., Dlouhý, A., Somsen, C., Bei, H., Eggeler, G., and George, E.P.: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 61, 5743 (2013).CrossRefGoogle Scholar
Hemphill, M.A., Yuan, T., Wang, G.Y., Yeh, J.W., Tsai, C.W., Chuang, A., and Liaw, P.K.: Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys. Acta Mater. 60, 5723 (2012).CrossRefGoogle Scholar
Hsu, C-Y., Yeh, J-W., Chen, S-K., and Shun, T-T.: Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0.5Fe alloy with boron addition. Metall. Mater. Trans. A 35, 1465 (2004).CrossRefGoogle Scholar
Huang, P.K., Yeh, J.W., Shun, T.T., and Chen, S.K.: Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating. Adv. Eng. Mater. 6, 74 (2004).CrossRefGoogle Scholar
Zhou, Y.J., Zhang, Y., Wang, Y.L., and Chen, G.L.: Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Appl. Phys. Lett. 90, 181904 (2007).CrossRefGoogle Scholar
Wang, X.F., Zhang, Y., Qiao, Y., and Chen, G.L.: Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys. Intermetallics 15, 357 (2007).CrossRefGoogle Scholar
Wang, Y.P., Li, B.S., Ren, M.X., Yang, C., and Fu, H.Z.: Microstructure and compressive properties of AlCrFeCoNi high entropy alloy. Mater. Sci. Eng., A 491, 154 (2008).CrossRefGoogle Scholar
Hsu, C-Y., Wang, W-R., Tang, W-Y., Chen, S-K., and Yeh, J-W.: Microstructure and mechanical properties of new AlCoxCrFeMo0.5Ni high-entropy alloys. Adv. Eng. Mater. 12, 44 (2010).CrossRefGoogle Scholar
Chen, Y., Hong, U., Yeh, J., and Shih, H.: Selected corrosion behaviors of a Cu0.5NiAlCoCrFeSi bulk glassy alloy in 288 °C high-purity water. Scripta Mater. 54, 1997 (2006).CrossRefGoogle Scholar
Zhang, W., Liaw, P.K., and Zhang, Y.: Science and technology in high-entropy alloys. Sci. China Mater. 61, 2 (2018).CrossRefGoogle Scholar
Tsai, K-Y., Tsai, M-H., and Yeh, J-W.: Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 61, 4887 (2013).CrossRefGoogle Scholar
Zhang, Y., Stocks, G.M., Jin, K., Lu, C., Bei, H., Sales, B.C., Wang, L., Béland, L.K., Stoller, R.E., Samolyuk, G.D., Caro, M., Caro, A., and Weber, W.J.: Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys. Nat. Commun. 6, 8736 (2015).CrossRefGoogle ScholarPubMed
Lu, C., Niu, L., Chen, N., Jin, K., Yang, T., Xiu, P., Zhang, Y., Gao, F., Bei, H., and Shi, S.: Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys. Nat. Commun. 7, 13564 (2016).CrossRefGoogle ScholarPubMed
Koppenaal, T., Yeh, W., and Cotterill, R.: Lattice defects in neutron irradiated αCu solid solution alloys. Philos. Mag. 13, 867 (1966).CrossRefGoogle Scholar
Zinkle, S.: Microstructure and properties of copper alloys following 14-MeV neutron irradiation. J. Nucl. Mater. 150, 140 (1987).CrossRefGoogle Scholar
English, C.: Low-dose neutron irradiation damage in FCC and BCC metals. J. Nucl. Mater. 108, 104 (1982).CrossRefGoogle Scholar
Stathopoulos, A., English, C., Eyre, B., and Hirsch, P.: The effect of alloying additions on collision cascades in heavy-ion irradiated copper solid solutions. Philos. Mag. A 44, 309 (1981).CrossRefGoogle Scholar
Robinson, T. and Jenkins, M.: Heavy-ion irradiation of nickel and nickel alloys. Philos. Mag. A 43, 999 (1981).CrossRefGoogle Scholar
Hashimoto, N., Byun, T., and Farrell, K.: Microstructural analysis of deformation in neutron-irradiated fcc materials. J. Nucl. Mater. 351, 295 (2006).CrossRefGoogle Scholar
Aidhy, D.S., Lu, C., Jin, K., Bei, H., Zhang, Y., Wang, L., and Weber, W.J.: Point defect evolution in Ni, NiFe, and NiCr alloys from atomistic simulations and irradiation experiments. Acta Mater. 99, 69 (2015).CrossRefGoogle Scholar
Granberg, F., Nordlund, K., Ullah, M.W., Jin, K., Lu, C., Bei, H., Wang, L.M., Djurabekova, F., Weber, W.J., and Zhang, Y.: Mechanism of radiation damage reduction in equiatomic multicomponent single phase alloys. Phys. Rev. Lett. 116, 135504 (2016).CrossRefGoogle ScholarPubMed
Jin, K., Guo, W., Lu, C., Ullah, M.W., Zhang, Y., Weber, W.J., Wang, L., Poplawsky, J.D., and Bei, H.: Effects of Fe concentration on the ion-irradiation induced defect evolution and hardening in Ni–Fe solid solution alloys. Acta Mater. 121, 365 (2016).CrossRefGoogle Scholar
Lu, C., Jin, K., Béland, L.K., Zhang, F., Yang, T., Qiao, L., Zhang, Y., Bei, H., Christen, H.M., and Stoller, R.E.: Direct observation of defect range and evolution in ion-irradiated single crystalline Ni and Ni binary alloys. Sci. Rep. 6, 19994 (2016).CrossRefGoogle ScholarPubMed
Otto, F., Yang, Y., Bei, H., and George, E.P.: Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 61, 2628 (2013).CrossRefGoogle Scholar
He, M-R., Wang, S., Shi, S., Jin, K., Bei, H., Yasuda, K., Matsumura, S., Higashida, K., and Robertson, I.M.: Mechanisms of radiation-induced segregation in CrFeCoNi-based single-phase concentrated solid solution alloys. Acta Mater. 126, 182 (2017).CrossRefGoogle Scholar
Lu, C., Yang, T., Jin, K., Gao, N., Xiu, P., Zhang, Y., Gao, F., Bei, H., Weber, W.J., Sun, K., Dong, Y., and Wang, L.: Radiation-induced segregation on defect clusters in single-phase concentrated solid-solution alloys. Acta Mater. 127, 98 (2017).CrossRefGoogle Scholar
Jin, M., Cao, P., and Short, M.P.: Thermodynamic mixing energy and heterogeneous diffusion uncover the mechanisms of radiation damage reduction in single-phase Ni–Fe alloys. Acta Mater. 147, 16 (2018).CrossRefGoogle Scholar
Jin, K., Lu, C., Wang, L.M., Qu, J., Weber, W.J., Zhang, Y., and Bei, H.: Effects of compositional complexity on the ion-irradiation induced swelling and hardening in Ni-containing equiatomic alloys. Scripta Mater. 119, 65 (2016).CrossRefGoogle Scholar
Levo, E., Granberg, F., Fridlund, C., Nordlund, K., and Djurabekova, F.: Radiation damage buildup and dislocation evolution in Ni and equiatomic multicomponent Ni-based alloys. J. Nucl. Mater. 490, 323 (2017).CrossRefGoogle Scholar
Zhang, Y., Zhao, S., Weber, W.J., Nordlund, K., Granberg, F., and Djurabekova, F.: Atomic-level heterogeneity and defect dynamics in concentrated solid-solution alloys. Curr. Opin. Solid State Mater. Sci. 21, 221 (2017).CrossRefGoogle Scholar
Jin, K., Sales, B.C., Stocks, G.M., Samolyuk, G.D., Daene, M., Weber, W.J., Zhang, Y., and Bei, H.: Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity. Sci. Rep. 6, 20159 (2016).CrossRefGoogle ScholarPubMed
Kumar, N.A.P.K., Li, C., Leonard, K.J., Bei, H., and Zinkle, S.J.: Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation. Acta Mater. 113, 230 (2016).CrossRefGoogle Scholar
Yang, T., Xia, S., Guo, W., Hu, R., Poplawsky, J.D., Sha, G., Fang, Y., Yan, Z., Wang, C., and Li, C.: Effects of temperature on the irradiation responses of Al0.1CoCrFeNi high entropy alloy. Scripta Mater. 144, 31 (2018).CrossRefGoogle Scholar
He, M-R., Wang, S., Jin, K., Bei, H., Yasuda, K., Matsumura, S., Higashida, K., and Robertson, I.M.: Enhanced damage resistance and novel defect structure of CrFeCoNi under in situ electron irradiation. Scripta Mater. 125, 5 (2016).CrossRefGoogle Scholar
Wirth, B.D., Caturla, M.J., Diaz de la Rubia, T., Khraishi, T., and Zbib, H.: Mechanical property degradation in irradiated materials: A multiscale modeling approach. Nucl. Instrum. Methods Phys. Res., Sect. B 180, 23 (2001).CrossRefGoogle Scholar
Wirth, B.D., Odette, G.R., Marian, J., Ventelon, L., Young-Vandersall, J.A., and Zepeda-Ruiz, L.A.: Multiscale modeling of radiation damage in Fe-based alloys in the fusion environment. J. Nucl. Mater. 329–333(Part A), 103 (2004).CrossRefGoogle Scholar
Malerba, L., Caro, A., and Wallenius, J.: Multiscale modelling of radiation damage and phase transformations: The challenge of FeCr alloys. J. Nucl. Mater. 382, 112 (2008).CrossRefGoogle Scholar
Voter, A.F.: Introduction to the kinetic Monte Carlo method. In Radiation Effects in Solids, Sickafus, K.E., Kotomin, E.A., and Uberuaga, B.P., eds. (Springer, Dordrecht, The Netherlands, 2007); p. 1.Google Scholar
Chatterjee, A. and Vlachos, D.G.: An overview of spatial microscopic and accelerated kinetic Monte Carlo methods. J. Comput. Aided Mater. Des. 14, 253 (2007).CrossRefGoogle Scholar
Zhao, S.J., Stocks, G.M., and Zhang, Y.W.: Defect energetics of concentrated solid-solution alloys from ab initio calculations: Ni0.5Co0.5, Ni0.5Fe0.5, Ni0.8Fe0.2, and Ni0.8Cr0.2. Phys. Chem. Chem. Phys. 18, 24043 (2016).CrossRefGoogle ScholarPubMed
Zhao, S., Egami, T., Stocks, G.M., and Zhang, Y.: Effect of d electrons on defect properties in equiatomic NiCoCr and NiCoFeCr concentrated solid solution alloys. Phys. Rev. Mater. 2, 013602 (2018).CrossRefGoogle Scholar
Chen, W., Ding, X., Feng, Y., Liu, X., Liu, K., Lu, Z.P., Li, D., Li, Y., Liu, C.T., and Chen, X-Q.: Vacancy formation enthalpies of high-entropy FeCoCrNi alloy via first-principles calculations and possible implications to its superior radiation tolerance. J. Mater. Sci. Technol. 34, 355 (2017).CrossRefGoogle Scholar
Middleburgh, S.C., King, D.M., Lumpkin, G.R., Cortie, M., and Edwards, L.: Segregation and migration of species in the CrCoFeNi high entropy alloy. J. Alloy. Comp. 599, 179 (2014).CrossRefGoogle Scholar
Ullah, M.W., Aidhy, D.S., Zhang, Y., and Weber, W.J.: Damage accumulation in ion-irradiated Ni-based concentrated solid-solution alloys. Acta Mater. 109, 17 (2016).CrossRefGoogle Scholar
Chakraborty, D. and Aidhy, D.S.: Cr-induced fast vacancy cluster formation and high Ni diffusion in concentrated Ni–Fe–Cr alloys. J. Alloy. Comp. 725(Suppl. C), 449 (2017).CrossRefGoogle Scholar
Béland, L.K., Lu, C., Osetskiy, Y.N., Samolyuk, G.D., Caro, A., Wang, L., and Stoller, R.E.: Features of primary damage by high energy displacement cascades in concentrated Ni-based alloys. J. Appl. Phys. 119, 085901 (2016).CrossRefGoogle Scholar
Béland, L.K., Osetsky, Y.N., and Stoller, R.E.: The effect of alloying nickel with iron on the supersonic ballistic stage of high energy displacement cascades. Acta Mater. 116, 136 (2016).CrossRefGoogle Scholar
Koch, L., Granberg, F., Brink, T., Utt, D., Albe, K., Djurabekova, F., and Nordlund, K.: Local segregation versus irradiation effects in high-entropy alloys: Steady-state conditions in a driven system. J. Appl. Phys. 122, 105106 (2017).CrossRefGoogle Scholar
Zhao, S., Velisa, G., Xue, H., Bei, H., Weber, W.J., and Zhang, Y.: Suppression of vacancy cluster growth in concentrated solid solution alloys. Acta Mater. 125, 231 (2017).CrossRefGoogle Scholar
Zhao, S., Osetsky, Y., and Zhang, Y.: Preferential diffusion in concentrated solid solution alloys: NiFe, NiCo, and NiCoCr. Acta Mater. 128, 391 (2017).CrossRefGoogle Scholar
Osetsky, Y.N., Béland, L.K., and Stoller, R.E.: Specific features of defect and mass transport in concentrated fcc alloys. Acta Mater. 115, 364 (2016).CrossRefGoogle Scholar
Bonny, G., Castin, N., and Terentyev, D.: Interatomic potential for studying ageing under irradiation in stainless steels: The FeNiCr model alloy. Model. Simul. Mater. Sci. Eng. 21, 085004 (2013).CrossRefGoogle Scholar
Zhao, S., Osetsky, Y.N., and Zhang, Y.: Atomic-scale dynamics of edge dislocations in Ni and concentrated solid solution NiFe alloys. J. Alloy. Comp. 701, 1003 (2017).CrossRefGoogle Scholar
Velişa, G., Wendler, E., Zhao, S., Jin, K., Bei, H., Weber, W., and Zhang, Y.: Delayed damage accumulation by athermal suppression of defect production in concentrated solid solution alloys. Mater. Res. Lett. 6, 136 (2018).CrossRefGoogle Scholar
Kohyama, A., Hishinuma, A., Gelles, D.S., Klueh, R.L., Dietz, W., and Ehrlich, K.: Low-activation ferritic and martensitic steels for fusion application. J. Nucl. Mater. 233, 138 (1996).CrossRefGoogle Scholar
Velişa, G., Ullah, M.W., Xue, H., Jin, K., Crespillo, M.L., Bei, H., Weber, W.J., and Zhang, Y.: Irradiation-induced damage evolution in concentrated Ni-based alloys. Acta Mater. 135, 54 (2017).CrossRefGoogle Scholar
Ming, K., Bi, X., and Wang, J.: Precipitation strengthening of ductile Cr15Fe20Co35Ni20Mo10 alloys. Scripta Mater. 137, 88 (2017).CrossRefGoogle Scholar
Gorsse, S., Miracle, D.B., and Senkov, O.N.: Mapping the world of complex concentrated alloys. Acta Mater. 135, 177 (2017).CrossRefGoogle Scholar
Li, D., Li, C., Feng, T., Zhang, Y., Sha, G., Lewandowski, J.J., Liaw, P.K., and Zhang, Y.: High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures. Acta Mater. 123, 285 (2017).CrossRefGoogle Scholar
Li, Z., Pradeep, K.G., Deng, Y., Raabe, D., and Tasan, C.C.: Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 534, 227 (2016).CrossRefGoogle ScholarPubMed
Kuznetsov, A.V., Shaysultanov, D.G., Stepanov, N.D., Salishchev, G.A., and Senkov, O.N.: Tensile properties of an AlCrCuNiFeCo high-entropy alloy in as-cast and wrought conditions. Mater. Sci. Eng., A 533, 107 (2012).CrossRefGoogle Scholar
He, J.Y., Wang, H., Huang, H.L., Xu, X.D., Chen, M.W., Wu, Y., Liu, X.J., Nieh, T.G., An, K., and Lu, Z.P.: A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater. 102, 187 (2016).CrossRefGoogle Scholar
Supplementary material: File

Yang et al. supplementary material

Figures S1-S3

Download Yang et al. supplementary material(File)
File 2.6 MB