Skip to main content
×
Home
    • Aa
    • Aa

Large Faraday effect and local structure of alkali silicate glasses containing divalent europium ions

  • Katsuhisa Tanaka (a1), Koji Fujita (a1), Nobuaki Matsuoka (a1), Kazuyuki Hirao (a1) and Naohiro Soga (a1)...
Abstract

Measurements of Faraday and Mössbauer effects have been performed at room temperature for alkali silicate glasses containing a large amount of Eu2+ ions to examine the relation between local structure and magnitude of Verdet constant. The Mössbauer spectra indicate that about 80% of europium ions are present as a divalent state. The effective transition wavelength and effective transition probability for the 4f7 → 4f65d transition of Eu2+, which causes the Faraday effect, are derived from the wavelength dependence of Verdet constant. Both effective transition wavelength and effective transition probability are large compared with borate glasses, leading to the large magnitude of Verdet constant of the alkali silicate glasses. The variation of effective transition wavelength with glass composition is connected with the change of 6s-electron density of Eu2+ evaluated from the Mössbauer spectroscopy.

Copyright
References
Hide All
1. R. A. Verhelst , R. W. Kline , A. M. De Graaf , and H. O. Hooper , Phys. Rev. B 11, 4427 (1975).

3. J. P. Sanchez , J. M. Friedt , R. Horne , and A. J. Van Duyneveldt , J. Phys. C 17, 127 (1984).

4. J. P. Renard , J. P. Miranday , and F. Varret , Solid State Commun. 35, 41 (1980).

6. H. Laville and J. C. Bernier , J. Mater. Sci. 15, 73 (1980).

9. C. B. Rubinstein , S. B. Berger , L. G. Van Uitert , and W. A. Bonner , J. Appl. Phys. 35, 2338 (1964).

10. S. B. Berger , C. B. Rubinstein , C. R. Kurkjian , and A. W. Treptow , Phys. Rev. 133, A723 (1964).

11. L. D. Pye , S. C. Cherukuri , J. Mansfield , and T. Loretz , J. Non-Cryst. Solids 56, 99 (1983).

12. V. Letellier , A. Seignac , A. Le Floch , and M. Matecki , J. Non-Cryst. Solids 111, 55 (1989).

14. G. T. Petrovskii , I. S. Edelman , T. V. Zarubina , A. V. Malakhovskii , V. N. Zabluda , and M.Yu. Ivanov , J. Non-Cryst. Solids 130, 35 (1991).

15. Y. Asahara , J. Ceram. Soc. Jpn. 99, 903 (1991).

16. M. W. Shafer and J. C. Suits , J. Am. Ceram. Soc. 49, 261 (1966).

17. J. Schoenes , E. Kaldis , W. Thöni , and P. Wachter , Phys. Status Solidi A 51, 173 (1979).

18. K. Tanaka , K. Hirao , and N. Soga , Jpn. J. Appl. Phys. 34, 4825 (1995).

19. J. Qiu , J. B. Qiu , H. Higuchi , Y. Kawamoto , and K. Hirao , J. Appl. Phys. 80, 5297 (1996).

20. J. H. Van Vleck and M. H. Hebb , Phys. Rev. 46, 17 (1934).

21. G. K. Shenoy and B. D. Dunlap , Nucl. Instrum. Methods 71, 285 (1969).

22. C-L. Chien , S. DeBenedetti , and F. De S. Barros , Phys. Rev. B 10, 3913 (1974).

24. K. Tanaka , K. Fujita , N. Soga , J. Qiu , and K. Hirao , J. Appl. Phys. 82, 840 (1997).

25. O. Berkooz , J. Phys. Chem. Solids 30, 1763 (1969).

26. J. M. D. Coey , A. MCevoy , and M. W. Shafer , J. Non-Cryst. Solids 43, 387 (1981).

27. M. Winterer , E. Mörsen , B. D. Mosel , and W. Müller-Warmuth , J. Phys. C 20, 5389 (1987).

28. J. F. Dillon Jr., J. Appl. Phys. 39, 922 (1968).

29. H. Takeuchi , Jpn. J. Appl. Phys. 14, 1903 (1975).

30. T. Koyanagi , K. Matsubara , H. Takaoka , and T. Takagi , J. Appl. Phys. 61, 3020 (1987).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 14 *
Loading metrics...

Abstract views

Total abstract views: 66 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 17th October 2017. This data will be updated every 24 hours.