Skip to main content
    • Aa
    • Aa

Laser-assisted biofabrication in tissue engineering and regenerative medicine

  • Sangmo Koo (a1), Samantha M. Santoni (a2), Bruce Z. Gao (a3), Costas P. Grigoropoulos (a1) and Zhen Ma (a4)...

Controlling the spatial arrangement of biomaterials and living cells provides the foundation for fabricating complex biological systems. Such level of spatial resolution (less than 10 µm) is difficult to be obtained through conventional cell processing techniques, which lack the precision, reproducibility, automation, and speed required for the rapid fabrication of engineered tissue constructs. Recently, laser-assisted biofabrication techniques are being intensively developed with the use of computer-aided processes for patterning and assembling both living and nonliving materials with prescribed 2D or 3D organization. In this review, we discuss laser-assisted fabrication methods, including laser tweezers, multi-photon polymerization, laser-induced forward transfer (LIFT), matrix assisted pulsed laser evaporation (MAPLE), and laser ablation as well as their applications in biological science and biomedical engineering. These advanced technologies enable the precise manipulation of in vitro cellular microenvironments and the ability to engineer functional tissue constructs with high complexity and heterogeneity, which serve in regenerative medicine, pharmacology, and basic cell biology studies.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Laser-assisted biofabrication in tissue engineering and regenerative medicine
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Laser-assisted biofabrication in tissue engineering and regenerative medicine
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Laser-assisted biofabrication in tissue engineering and regenerative medicine
      Available formats
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
a) Address all correspondence to this author. e-mail:
Hide All
1. WobmaH. and Vunjak-NovakovicG.: Tissue engineering and regenerative medicine 2015: A year in review. Tissue Eng., Part B 22(2), 101113 (2016).
2. OzbolatI.T. and HospodiukM.: Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 76, 321343 (2016).
3. ZhangY., ArneriA., Dell’ErbaV., ShinS., AlemanJ., BusignaniF., BersiniS., DokmeciM.R., AnnabiN., MorettiM., RasponiM., and KhademhosseiniA.: Bioprinting the heart: Applications in tissue fabrication and organs-on-a-chip. Tissue Eng., Part A 21, S257S258 (2015).
4. ZhangY.S., AlemanJ., ArneriA., BersiniS., PirainoF., ShinS.R., DokmeciM.R., and KhademhosseiniA.: From cardiac tissue engineering to heart-on-a-chip: Beating challenges. Biomed. Mater. 10(3), 034006 (2015).
5. LeeD.Y., LeeH., KimY., YooS.Y., ChungW.J., and KimG.: Phage as versatile nanoink for printing 3-D cell-laden scaffolds. Acta Biomater. 29, 112124 (2016).
6. BhatnagarP., MarkS.S., KimI., ChenH., SchmidtB., LipsonM., and BattC.A.: Dendrimer-scaffold-based electron-beam patterning of biomolecules. Adv. Mater. 18(3), 315319 (2006).
7. JoanneP., KitsaraM., BoitardS.E., NaemetallaH., VanneauxV., PernotM., LargheroJ., ForestP., ChenY., MenascheP., and AgbulutO.: Nanofibrous clinical-grade collagen scaffolds seeded with human cardiomyocytes induces cardiac remodeling in dilated cardiomyopathy. Biomaterials 80, 157168 (2016).
8. ShaoW., HeJ., SangF., DingB., ChenL., CuiS., LiK., HanQ., and TanW.: Coaxial electrospun aligned tussah silk fibroin nanostructured fiber scaffolds embedded with hydroxyapatite-tussah silk fibroin nanoparticles for bone tissue engineering. Mater. Sci. Eng., C 58, 342351 (2016).
9. HughesL.A., GastonJ., McAlindonK., WoodhouseK.A., and ThibeaultS.L.: Electrospun fiber constructs for vocal fold tissue engineering: Effects of alignment and elastomeric polypeptide coating. Acta Biomater. 13, 111120 (2015).
10. PuJ., YuanF., LiS., and KomvopoulosK.: Electrospun bilayer fibrous scaffolds for enhanced cell infiltration and vascularization in vivo. Acta Biomater. 13, 131141 (2015).
11. AhnH., JuY.M., TakahashiH., WilliamsD.F., YooJ.J., LeeS.J., OkanoT., and AtalaA.: Engineered small diameter vascular grafts by combining cell sheet engineering and electrospinning technology. Acta Biomater. 16, 1422 (2015).
12. ThadavirulN., PavasantP., and SupapholP.: Development of polycaprolactone porous scaffolds by combining solvent casting, particulate leaching, and polymer leaching techniques for bone tissue engineering. J. Biomed. Mater. Res., Part A 102(10), 33793392 (2014).
13. SalernoA., OlivieroM., Di MaioE., IannaceS., and NettiP.A.: Design of porous polymeric scaffolds by gas foaming of heterogeneous blends. J. Mater. Sci.: Mater. Med. 20(10), 20432051 (2009).
14. JanikH. and MarzecM.: A review: Fabrication of porous polyurethane scaffolds. Mater. Sci. Eng., C 48, 586591 (2015).
15. LiuX. and MaP.X.: Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds. Biomaterials 30(25), 40944103 (2009).
16. TranV. and WenX.: Rapid prototyping technologies for tissue regeneration. Woodhead Publ. Ser. Biomater. 70, 97155 (2014).
17. SelimisA., MironovV., and FarsariM.: Direct laser writing: Principles and materials for scaffold 3D printing. Microelectron. Eng. 132, 8389 (2015).
18. KochL., GrueneM., UngerC., and ChichkovB.: Laser assisted cell printing. Curr. Pharm. Biotechnol. 14(1), 9197 (2013).
19. GuillotinB., AliM., DucomA., CatrosS., KeriquelV., SouquetA., RemyM., FricainJ.C., and GuillemotF.: Laser-assisted bioprinting for tissue engineering. In Biofabrication: Micro- and Nano-Fabrication, Printing, Patterning, and Assemblies, G. Forgacs and W. Sun, eds. (William Andrew Publishing, Boston, 2013); 95118.
20. RiggsB.C., DiasA.D., SchieleN.R., CristescuR., HuangY., CorrD.T., and ChriseyD.B.: Matrix-assisted pulsed laser methods for biofabrication. MRS Bull. 36(12), 10431050 (2011).
21. GuillotinB., SouquetA., CatrosS., DuocastellaM., PippengerB., BellanceS., BareilleR., RemyM., BordenaveL., AmedeeJ., and GuillemotF.: Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 31(28), 72507256 (2010).
22. HanY.L., HuJ., GeninG.M., LuT.J., and XuF.: BioPen: Direct writing of functional materials at the point of care. Sci. Rep. 4, 4872 (2014).
23. SuntivichR., DrachukI., CalabreseR., KaplanD.L., and TsukrukV.V.: Inkjet printing of silk nest arrays for cell hosting. Biomacromolecules 15(4), 14281435 (2014).
24. HendrikxS., KascholkeC., FlathT., SchumannD., GressenbuchM., SchulzeF.P., HackerM.C., and Schulz-SiegmundM.: Indirect rapid prototyping of sol–gel hybrid glass scaffolds for bone regeneration—Effects of organic crosslinker valence, content and molecular weight on mechanical properties. Acta Biomater. 35, 318329 (2016).
25. GuillotinB., CatrosS., KeriquelV., SouquetA., FontaineA., RemyM., FricainJ.C., and GuillemotF.: Rapid prototyping of complex tissues with laser assisted bioprinting (LAB). Woodhead Publ. Ser. Biomater. 70, 156175 (2014).
26. AshkinA.: Applications of laser radiation pressure. Science 210(4474), 10811088 (1980).
27. AshkinA.: Trapping of atoms by resonance radiation pressure. Phys. Rev. Lett. 40(12), 729732 (1978).
28. AshkinA. and DziedzicJ.M.: Optical trapping and manipulation of viruses and bacteria. Science 235(4795), 15171520 (1987).
29. IshijimaA., KojimaH., FunatsuT., TokunagaM., HiguchiH., TanakaH., and YanagidaT.: Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with actin. Cell 92(2), 161171.
30. KojimaH., MutoE., HiguchiH., and YanagidaT.: Mechanics of single kinesin molecules measured by optical trapping nanometry. Biophys. J. 73(4), 20122022 (1997).
31. Brower-TolandB.D., SmithC.L., YehR.C., LisJ.T., PetersonC.L., and WangM.D.: Mechanical disruption of individual nucleosomes reveals a reversible multistage release of DNA. Proc. Natl. Acad. Sci. 99(4), 19601965 (2002).
32. OddeD.J. and RennM.J.: Laser-guided direct writing of living cells. Biotechnol. Bioeng. 67(3), 312318 (2000).
33. NahmiasY., SchwartzR.E., VerfaillieC.M., and OddeD.J.: Laser-guided direct writing for three-dimensional tissue engineering. Biotechnol. Bioeng. 92(2), 129136 (2005).
34. NahmiasY. and OddeD.J.: Micropatterning of living cells by laser-guided direct writing: Application to fabrication of hepatic-endothelial sinusoid-like structures. Nat. Protoc. 1(5), 22882296 (2006).
35. MaZ., RussellP.K., QinW., YunJ.X., YuanX., PengX., BorgT.K., and GaoB.Z.: Laser-guidance-based cell deposition microscope for heterotypic single-cell micropatterning. Biofabrication 3(3), 034107 (2011).
36. MaZ., YangH., LiuH., XuM., RunyanR.B., EisenbergC.A., MarkwaldR.R., BorgT.K., and GaoB.Z.: Mesenchymal stem cell-cardiomyocyte interactions under defined contact modes on laser-patterned biochips. Plos One 8(2), e56554 (2013).
37. MaZ., LiuQ., LiuH., YangH., YunJ.X., EisenbergC., BorgT.K., XuM., and GaoB.Z.: Laser-patterned stem-cell bridges in a cardiac muscle model for on-chip electrical conductivity analyses. Lab Chip 12(3), 566573 (2012).
38. PirloR.K., SweeneyA.J., RingeisenB.R., KindyM., and GaoB.Z.: Biochip/laser cell deposition system to assess polarized axonal growth from single neurons and neuron/glia pairs in microchannels with novel asymmetrical geometries. Biomicrofluidics 5(1), 013408 (2011).
39. WeiL., SweeneyA.J., ShengL., FangY., KindyM.S., XiT., and GaoB.Z.: Single-neuron axonal pathfinding under geometric guidance: Low-dose-methylmercury developmental neurotoxicity test. Lab Chip 14(18), 35643571 (2014).
40. KirkhamG.R., BritchfordE., UptonT., WareJ., GibsonG.M., DevaudY., EhrbarM., PadgettM., AllenS., ButteryL.D., and ShakesheffK.: Precision assembly of complex cellular microenvironments using holographic optical tweezers. Sci. Rep. 5, 8577 (2015).
41. DoM.T., NguyenT.T.N., LiQ.G.L., BenistyH., Ledoux-RakI., and LaiN.D.: Submicrometer 3D structures fabrication enabled by one-photon absorption direct laser writing. Opt. Express 21(18), 2096420973 (2013).
42. MaZ., KooS., FinneganM.A., LoskillP., HuebschN., MarksN.C., ConklinB.R., GrigoropoulosC.P., and HealyK.E.: Three-dimensional filamentous human diseased cardiac tissue model. Biomaterials 35(5), 13671377 (2014).
43. HidaiH., JeonH., HwangD.J., and GrigoropoulosC.P.: Self-standing aligned fiber scaffold fabrication by two photon photopolymerization. Biomed. Microdevices 11(3), 643652 (2009).
44. KapylaE., AydoganD.B., VirjulaS., VanhatupaS., MiettinenS., HyttinenJ., and KellomakiM.: Direct laser writing and geometrical analysis of scaffolds with designed pore architecture for three-dimensional cell culturing. J. Micromech. Microeng. 22(11), 112 (2012).
45. MateiA., SchouJ., CanulescuS., ZamfirescuM., AlbuC., MituB., BuruianaE.C., BuruianaT., MustaciosuC., PetcuI., and DinescuM.: Functionalized ormosil scaffolds processed by direct laser polymerization for application in tissue engineering. Appl. Surf. Sci. 278, 357361 (2013).
46. MateiA., ZamfirescuM., JipaF., LuculescuC., DinescuM., BuruianaE.C., BuruianaT., SimaL.E., and PetrescuS.M.: Two photon polymerization of ormosils. In International Symposium on High Power Laser Ablation 2010, Vol. 1278, 2010; pp. 843851.
47. RekstyteS., ZukauskasA., PurlysV., GordienkoY., and MalinauskasM.: Direct laser writing of 3D polymer micro/nanostructures on metallic surfaces. Appl. Surf. Sci. 270, 382387 (2013).
48. RaimondiM.T., EatonS.M., LaganaM., AprileV., NavaM.M., CerulloG., and OsellameR.: Three-dimensional structural niches engineered via two-photon laser polymerization promote stem cell homing. Acta Biomater. 9(1), 45794584 (2013).
49. StankeviciusE., GertusT., RutkauskasM., GedvilasM., RaciukaitisG., GadonasR., SmilgeviciusV., and MalinauskasM.: Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique. J. Micromech. Microeng. 22(6), 065022 (2012).
50. MihailescuM., PaunI.A., ZamfirescuM., LuculescuC.R., AcasandreiA.M., and DinescuM.: Laser-assisted fabrication and non-invasive imaging of 3D cell-seeding constructs for bone tissue engineering. J. Mater. Sci. 51(9), 42624273 (2016).
51. ZhangW.D. and ChenS.C.: Femtosecond laser nanofabrication of hydrogel biomaterial. MRS Bull. 36(12), 10281033 (2011).
52. KwokS.J.J., KuznetsovI.A., KimM., ChoiM., ScarcelliG., and YunS.H.: Selective two-photon collagen crosslinking in situ measured by Brillouin microscopy. Optica 3(5), 469472 (2016).
53. KumarS., MaxwellI.Z., HeisterkampA., PolteT.R., LeleT.P., SalangaM., MazurE., and IngberD.E.: Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys. J. 90(10), 37623773 (2006).
54. TibbittM.W., KloxinA.M., DyamenahalliK.U., and AnsethK.S.: Controlled two-photon photodegradation of PEG hydrogels to study and manipulate subcellular interactions on soft materials. Soft Matter 6(20), 51005108 (2010).
55. Ellis-DaviesG.C.: Caged compounds: Photorelease technology for control of cellular chemistry and physiology. Nat. Methods 4(8), 619628 (2007).
56. LeeS.H., MoonJ.J., and WestJ.L.: Three-dimensional micropatterning of bioactive hydrogels via two-photon laser scanning photolithography for guided 3D cell migration. Biomaterials 29(20), 29622968 (2008).
57. MarinoA., FilippeschiC., MattoliV., MazzolaiB., and CiofaniG.: Biomimicry at the nanoscale: Current research and perspectives of two-photon polymerization. Nanoscale 7(7), 28412850 (2015).
58. MarinoA., FilippeschiC., GenchiG.G., MattoliV., MazzolaiB., and CiofaniG.: The Osteoprint: A bioinspired two-photon polymerized 3-D structure for the enhancement of bone-like cell differentiation. Acta Biomater. 10(10), 43044313 (2014).
59. AkopovaT.A., TimashevP.S., DeminaT.S., BardakovaK.N., MinaevN.V., BurdukovskiiV.F., CherkaevG.V., VladimirovL.V., IstominA.V., SvidchenkoE.A., SurinN.M., and BagratashviliV.N.: Solid-state synthesis of unsaturated chitosan derivatives to design 3D structures through two-photon-induced polymerization. Mendeleev Commun. 25(4), 280282 (2015).
60. BalciunasE., LukoseviciusL., MackeviciuteD., RekstyteS., RutkunasV., PaipulasD., StankeviciuteK., BaltriukieneD., BukelskieneV., PiskarskasA.P., and MalinauskasM.: Combination of thermal extrusion printing and ultrafast laser fabrication for the manufacturing of 3D composite scaffolds. Proc. SPIE 8972, 89721N (2014).
61. JiangG., ShenK., and WangM.R.: Fabrication of 3D Micro- and Nano-Structures by Prism-Assisted UV and Holographic Lithography. In Updates in Advanced Lithography, S. Hosaka, ed. (InTech, Rijeka, 2013); ch. 10.
62. StankeviciusE., BalciunasE., MalinauskasM., RaciukaitisG., BaltriukieneD., and BukelskieneV.: Holographic lithography for biomedical applications. Proc. SPIE 8433, 843312 (2012).
63. GittardS.D., NguyenA., ObataK., KorolevaA., NarayanR.J., and ChichkovB.N.: Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator. Biomed. Opt. Express 2(11), 31673178 (2011).
64. MezelC., SouquetA., HalloL., and GuillemotF.: Bioprinting by laser-induced forward transfer for tissue engineering applications: Jet formation modeling. Biofabrication 2(1), 014103 (2010).
65. BarronJ.A., WuP., LadouceurH.D., and RingeisenB.R.: Biological laser printing: A novel technique for creating heterogeneous 3-dimensional cell patterns. Biomed. Microdevices 6(2), 139147 (2004).
66. GrueneM., DeiwickA., KochL., SchlieS., UngerC., HofmannN., BernemannI., GlasmacherB., and ChichkovB.: Laser printing of stem cells for biofabrication of scaffold-free autologous grafts. Tissue Eng., Part C 17(1), 7987 (2011).
67. RingeisenB.R., KimH., BarronJ.A., KrizmanD.B., ChriseyD.B., JackmanS., AuyeungR.Y.C., and SpargoB.J.: Laser printing of pluripotent embryonal carcinoma cells. Tissue Eng. 10(3–4), 483491 (2004).
68. ChenC.Y., BarronJ.A., and RingeisenB.R.: Cell patterning without chemical surface modification: Cell–cell interactions between printed bovine aortic endothelial cells (BAEC) on a homogeneous cell-adherent hydrogel. Appl. Surf. Sci. 252(24), 86418645 (2006).
69. SchieleN.R., CorrD.T., HuangY., RaofN.A., XieY., and ChriseyD.B.: Laser-based direct-write techniques for cell printing. Biofabrication 2(3), 032001 (2010).
70. GaebelR., MaN., LiuJ., GuanJ.J., KochL., KlopschC., GrueneM., ToelkA., WangW.W., MarkP., WangF., ChichkovB., LiW.Z., and SteinhoffG.: Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. Biomaterials 32(35), 92189230 (2011).
71. WuP.K. and RingeisenB.R.: Development of human umbilical vein endothelial cell (HUVEC) and human umbilical vein smooth muscle cell (HUVSMC) branch/stem structures on hydrogel layers via biological laser printing (BioLP). Biofabrication 2(1), 014111 (2010).
72. PirloR.K., WuP., LiuJ., and RingeisenB.: PLGA/hydrogel biopapers as a stackable substrate for printing HUVEC networks via BioLP (TM). Biotechnol. Bioeng. 109(1), 262273 (2012).
73. OvsianikovA., GrueneM., PflaumM., KochL., MaioranaF., WilhelmiM., HaverichA., and ChichkovB.: Laser printing of cells into 3D scaffolds. Biofabrication 2(1), 014104 (2010).
74. VisanA., GrossinD., StefanN., DutaL., MiroiuF.M., StanG.E., SopronyiM., LuculescuC., FrecheM., MarsanO., CharvilatC., CiucaS., and MihailescuI.N.: Biomimetic nanocrystalline apatite coatings synthesized by matrix assisted pulsed laser evaporation for medical applications. Mater. Sci. Eng., B 181, 5663 (2014).
75. BoaniniE., TorricelliP., FiniM., SimaF., SerbanN., MihailescuI.N., and BigiA.: Magnesium and strontium doped octacalcium phosphate thin films by matrix assisted pulsed laser evaporation. J. Inorg. Biochem. 107(1), 6572 (2012).
76. DoraiswamyA., NarayanR.J., HarrisM.L., QadriS.B., ModiR., and ChriseyD.B.: Laser microfabrication of hydroxyapatite-osteoblast-like cell composites. J. Biomed. Mater. Res., Part A 80(3), 635643 (2007).
77. BigiA., BoaniniE., CapucciniC., FiniM., MihailescuI.N., RistoscuC., SimaF., and TorricelliP.: Biofunctional alendronate-hydroxyapatite thin films deposited by matrix assisted pulsed laser evaporation. Biomaterials 30(31), 61686177 (2009).
78. DoraiswamyA., NarayanR.J., LippertT., UrechL., WokaunA., NagelM., HoppB., DinescuM., ModiR., AuyeungR.C.Y., and ChriseyD.B.: Excimer laser forward transfer of mammalian cells using a novel triazene absorbing layer. Appl. Surf. Sci. 252(13), 47434747 (2006).
79. PaunI.A., MihailescuI., CalenicB., LuculescuC.R., GreabuM., and DinescuA.: MAPLE deposition of 3D micropatterned polymeric substrates for cell culture. Appl. Surf. Sci. 278(1), 166172 (2013).
80. PaunI.A., ZamfirescuM., MihailescuM., LuculescuC.R., MustaciosuC.C., DorobantuI., CalenicB., and DinescuM.: Laser micro-patterning of biodegradable polymer blends for tissue engineering. J. Mater. Sci. 50(2), 923936 (2015).
81. MalinauskasM., RekstyteS., LukoseviciusL., ButkusS., BalciunasE., PeciukaityteM., BaltriukieneD., BukelskieneV., ButkeviciusA., KuceviciusP., RutkunasV., and JuodkazisS.: 3D microporous scaffolds manufactured via combination of fused filament fabrication and direct laser writing ablation. Micromachines 5(4), 839858 (2014).
82. JunI., ChungY.W., HeoY.H., HanH.S., ParkJ., JeongH., LeeH., LeeY.B., KimY.C., SeokH.K., ShinH., and JeonH.: Creating hierarchical topographies on fibrous platforms using femtosecond laser ablation for directing myoblasts behavior. ACS Appl Mater Interfaces 8(5), 34073417 (2016).
83. AbagnaleG., StegerM., NguyenV.H., HerschN., SechiA., JoussenS., DeneckeB., MerkelR., HoffmannB., DreserA., SchnakenbergU., GillnerA., and WagnerW.: Surface topography enhances differentiation of mesenchymal stem cells towards osteogenic and adipogenic lineages. Biomaterials 61, 316326 (2015).
84. Sarig-NadirO., LivnatN., ZajdmanR., ShohamS., and SeliktarD.: Laser photoablation of guidance microchannels into hydrogels directs cell growth in three dimensions. Biophys. J. 96(11), 47434752 (2009).
85. ApplegateM.B., CoburnJ., PartlowB.P., MoreauJ.E., MondiaJ.P., MarelliB., KaplanD.L., and OmenettoF.G.: Laser-based three-dimensional multiscale micropatterning of biocompatible hydrogels for customized tissue engineering scaffolds. Proc. Natl. Acad. Sci. U. S. A. 112(39), 1205212057 (2015).
86. JeonH., KooS., ReeseW.M., LoskillP., GrigoropoulosC.P., and HealyK.E.: Directing cell migration and organization via nanocrater-patterned cell-repellent interfaces. Nat. Mater. 14(9), 918923 (2015).
87. LeeB.L., JeonH., WangA., YanZ., YuJ., GrigoropoulosC., and LiS.: Femtosecond laser ablation enhances cell infiltration into three-dimensional electrospun scaffolds. Acta Biomater. 8(7), 26482658 (2012).
88. De MariaC., GrassiL., VozziF., AhluwaliaA., and VozziG.: Development of a novel micro-ablation system to realise micrometric and well-defined hydrogel structures for tissue engineering applications. Rapid Prototyping J. 20(6), 490498 (2014).
89. LiuY., SunS., SinghaS., ChoM.R., and GordonR.J.: 3D femtosecond laser patterning of collagen for directed cell attachment. Biomaterials 26(22), 45974605 (2005).
90. LiY.C., LinM.W., YenM.H., FanS.M.Y., WuJ.T., YoungT.H., ChengJ.Y., and LinS.J.: Programmable laser-assisted surface microfabrication on a poly(vinyl alcohol)-coated glass chip with self-changing cell adhesivity for heterotypic cell patterning. ACS Appl. Mater. Interfaces 7(40), 2232222332 (2015).
91. OzbolatI.T. and ChenH.: Manufacturing living things. Ind. Eng. 45(1), 3034 (2013).
92. TünnermannA., SchreiberT., and LimpertJ.: Fiber lasers and amplifiers: An ultrafast performance evolution. Appl Optics 49(25), F71F78 (2010).
93. HeF., XuH., ChengY., NiJ., XiongH., XuZ., SugiokaK., and MidorikawaK.: Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses. Opt. Lett. 35(7), 11061108 (2010).
94. VitekD.N., AdamsD.E., JohnsonA., TsaiP.S., BackusS., DurfeeC.G., KleinfeldD., and SquierJ.A.: Temporally focused femtosecond laser pulses for low numerical aperture micromachining through optically transparent materials. Opt. Express 18(17), 1808618094 (2010).
95. ZengB., ChuW., GaoH., LiuW., LiG., ZhangH., YaoJ., NiJ., ChinS.L., ChengY., and XuZ.: Enhancement of peak intensity in a filament core with spatiotemporally focused femtosecond laser pulses. Phys. Rev. A 84(6), 063819 (2011).
96. KimD. and SoP.T.C.: High-throughput three-dimensional lithographic microfabrication. Opt. Lett. 35(10), 16021604 (2010).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 165
Total number of PDF views: 304 *
Loading metrics...

Abstract views

Total abstract views: 599 *
Loading metrics...

* Views captured on Cambridge Core between 19th December 2016 - 23rd October 2017. This data will be updated every 24 hours.