Skip to main content
×
Home

Length-dependent performances of sodium deoxycholate-dispersed single-walled carbon nanotube thin-film transistors

  • Rongmei Si (a1), Hong Wang (a1), Li Wei (a1), Yuan Chen (a1), Zhenfeng Wang (a2) and Jun Wei (a2)...
Abstract
Abstract

The material characteristics of single-walled carbon nanotubes (SWCNTs) influence the performance of SWCNT thin-film transistors (TFTs). In this study, a density gradient ultracentrifugation method was used to sort surfactant (sodium deoxycholate)-dispersed SWCNTs by length. SWCNTs of 150 ± 33 nm and 500 ± 91 nm long were fabricated into TFTs. The results show that the performance of SWCNT-TFTs is tube length dependent. TFTs fabricated using 500-nm long tubes have maximum on/off ratio around 105 with the mobility at ∼0.15 cm2/(V s), which is much higher than that of TFTs using 150-nm long tubes. Shorter tubes need higher tube density to form semiconducting paths, leading to lower on/off ratio and high contact resistance. Surfactant-wrapped SWCNTs will bundle into ropes of different size when tube density is high. It is critical to control tube length as well as surfactant residue content to build high performance SWCNT-TFTs.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: chenyuan@ntu.edu.sg
References
Hide All
1.Zhou X.J., Park J.Y., Huang S.M., Liu J., and McEuen P.L.: Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys. Rev. Lett. 95(14), 146805 (2005).
2.Dai H.J., Javey A., Pop E., Mann D., Kim W., and Lu Y.R.: Electrical transport properties and field effect transistors of carbon nanotubes. Nano 1(1), 1 (2006).
3.Banerjee S., Hemraj-Benny T., and Wong S.S.: Routes towards separating metallic and semiconducting nanotubes. J. Nanosci. Nanotechnol. 5(6), 841 (2005).
4.Hersam M.C.: Progress towards monodisperse single-walled carbon nanotubes. Nat. Nanotechnol. 3(7), 387 (2008).
5.Liu J. and Hersam M.C.: Recent developments in carbon nanotube sorting and selective growth. MRS Bull. 35(4), 315 (2010).
6.Yang S.B., Kong B.S., Jung D.H., Baek Y.K., Han C.S., Oh S.K., and Jung H.T.: Recent advances in hybrids of carbon nanotube network films and nanomaterials for their potential applications as transparent conducting films. Nanoscale 3(4), 1361 (2011).
7.Cao Q. and Rogers J.A.: Ultrathin films of single-walled carbon nanotubes for electronics and sensors: A review of fundamental and applied aspects. Adv. Mater. 21(1), 29 (2009).
8.Lay M.D., Novak J.P., and Snow E.S.: Simple route to large-scale ordered arrays of liquid-deposited carbon nanotubes. Nano Lett. 4(4), 603 (2004).
9.Asada Y., Nihey F., Ohmori S., Shinohara H., and Saito T.: Diameter-dependent performance of single-walled carbon nanotube thin-film transistors. Adv. Mater. 23(40), 4631 (2011).
10.Asada Y., Miyata Y., Ohno Y., Kitaura R., Sugai T., Mizutani T., and Shinohara H.: High-performance thin-film transistors with DNA-assisted solution processing of isolated single-walled carbon nanotubes. Adv. Mater. 22(24), 2698 (2010).
11.Lee C.W., Weng C.H., Wei L., Chen Y., Chan-Park M.B., Tsai C.H., Leou K.C., Poa C.H.P., Wang J.L., and Li L.J.: Toward high-performance solution-processed carbon nanotube network transistors by removing nanotube bundles. J. Phys. Chem. C 112(32), 12089 (2008).
12.Snow E.S., Novak J.P., Campbell P.M., and Park D.: Random networks of carbon nanotubes as an electronic material. Appl. Phys. Lett. 82(13), 2145 (2003).
13.Hu L., Hecht D.S., and Gruner G.: Percolation in transparent and conducting carbon nanotube networks. Nano Lett. 4(12), 2513 (2004).
14.Ishida M. and Nihey F.: Estimating the yield and characteristics of random network carbon nanotube transistors. Appl. Phys. Lett. 92(16), 163507 (2008).
15.Kocabas C., Pimparkar N., Yesilyurt O., Kang S.J., Alam M.A., and Rogers J.A.: Experimental and theoretical studies of transport through large scale, partially aligned arrays of single-walled carbon nanotubes in thin film type transistors. Nano Lett. 7(5), 1195 (2007).
16.Pimparkar N., Kocabas C., Kang S.J., Rogers J., and Alam M.A.: Limits of performance gain of aligned CNT over randomized network: Theoretical predictions and experimental validation. IEEE Electron Device Lett. 28(7), 593 (2007).
17.Pimparkar N., Guo J., and Alam M.A.: Performance assessment of subpercolating nanobundle network thin-film transistors by an analytical model. IEEE Trans. Electron Devices 54(4), 637 (2007).
18.Kumar S., Murthy J.Y., and Alam M.A.: Percolating conduction in finite nanotube networks. Phys. Rev. Lett. 95(6), (2005).
19.Miyata Y., Shiozawa K., Asada Y., Ohno Y., Kitaura R., Mizutani T., and Shinohara H.: Length-sorted semiconducting carbon nanotubes for high-mobility thin film transistors. Nano Res. 4(10), 963 (2011).
20.Pimparkar N., Guo J., and Alam M.A.: Performance assessment of subpercolating nanobundle network thin-film transistors by an analytical model. IEEE Trans. Electron Devices 54(4), 637 (2007).
21.Fagan J.A., Simpson J.R., Bauer B.J., Lacerda S.H.D., Becker M.L., Chun J., Migler K.B., Walker A.R.H., and Hobbie E.K.: Length-dependent optical effects in single-wall carbon nanotubes. J. Am. Chem. Soc. 129(34), 10607 (2007).
22.Huang X.Y., McLean R.S., and Zheng M.: High-resolution length sorting and purification of DNA-wrapped carbon nanotubes by size-exclusion chromatography. Anal. Chem. 77(19), 6225 (2005).
23.Casey J.P., Bachilo S.M., Moran C.H., and Weisman R.B.: Chirality-resolved length analysis of single-walled carbon nanotube samples through shear-aligned photoluminescence anisotropy. ACS Nano 2(8), 1738 (2008).
24.Chun J., Fagan J.A., Hobbie E.K., and Bauer B.J.: Size separation of single-wall carbon nanotubes by flow-field flow fractionation. Anal. Chem. 80(7), 2514 (2008).
25.Fagan J.A., Becker M.L., Chun J., and Hobbie E.K.: Length fractionation of carbon nanotubes using centrifugation. Adv. Mater. 20(9), 1609 (2008).
26.Fagan J.A., Becker M.L., Chun J.H., Nie P.T., Bauer B.J., Simpson J.R., Hight-Walker A., and Hobbie E.K.: Centrifugal length separation of carbon nanotubes. Langmuir 24(24), 13880 (2008).
27.Hobbie E.K., Fagan J.A., Obrzut J., and Hudson S.D.: Microscale polymer-nanotube composites. ACS Appl. Mater. Interfaces 1(7), 1561 (2009).
28.Asada Y., Miyata Y., Shiozawa K., Ohno Y., Kitaura R., Mizutani T., and Shinohara H.: Thin-film transistors with length-sorted DNA-wrapped single-wall carbon nanotubes. J. Phys. Chem. C 115(1), 270 (2011).
29.Arnold M.S., Green A.A., Hulvat J.F., Stupp S.I., and Hersam M.C.: Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 1(1), 60 (2006).
30.Carvalho E.J.F. and dos Santos M.C.: Role of surfactants in carbon nanotubes density gradient separation. ACS Nano. 4(2), 765 (2010).
31.Si R., Wang K., Chen T., and Chen Y.: Chemometric determination of the length distribution of single walled carbon nanotubes through optical spectroscopy. Anal. Chim. Acta 708(1–2), 28 (2011).
32.Collins P.G., Bradley K., Ishigami M., and Zettl A.: Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287(5459), 1801 (2000).
33.Kim W., Javey A., Vermesh O., Wang O., Li Y.M., and Dai H.J.: Hysteresis caused by water molecules in carbon nanotube field-effect transistors. Nano Lett. 3(2), 193 (2003).
34.Pike G.E. and Seager C.H.: Percolation and conductivity-computer study. 1. Phys. Rev. B: Condens. Matter 10(4), 1421 (1974).
35.Lee C.W., Han X.D., Chen F.M., Wei J., Chen Y., Chan-Park M.B., and Li L.J.: Solution-processable carbon nanotubes for semiconducting thin-film transistor devices. Adv. Mater. 22(11), 1278 (2010).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 1
Total number of PDF views: 21 *
Loading metrics...

Abstract views

Total abstract views: 133 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 17th November 2017. This data will be updated every 24 hours.