Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-28T15:23:12.277Z Has data issue: false hasContentIssue false

Light absorptive underlayer enhanced excimer-laser crystallization of Si thin-film

Published online by Cambridge University Press:  31 January 2011

Wenchang Yeh*
Affiliation:
Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
Dunyuan Ke
Affiliation:
Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
Chunjun Zhuang
Affiliation:
Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
Hsiangen Huang
Affiliation:
Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
Yubang Yang
Affiliation:
Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
*
a)Address all correspondence to this author. e-mail: yeh@mail.ntust.edu.tw and yeh.wenchang@gmail.com
Get access

Abstract

A sample structure and method for superlateral-growth (SLG) enhancement in excimer-laser crystallization has been implemented and realized. The proposed sample structure is a Si film/buffer film/light-absorptive (LA) film/glass-stacked structure, with the irradiation of laser light from underneath a substrate. The influence of the absorption coefficient α of the LA film has been found to be critical in this structure. By increasing α from 0 to 12,000 cm−1, diameter of SLG grain has increased from 0.8 to 10 μm, with the solidification term increased from 75 to 1050 ns, respectively. The radius of SLG grain was shown to be proportional to the solidification term with a slope of 5 m/s. This result suggests the average SLG growth rate is constant at 5 m/s, irrespective of the solidification term of Si film. The applicability of present method to both sequential lateral solidification method and micromelt seeding method was demonstrated. Overcoming of Si agglomeration has been shown to be important for applying the present method to the sequential lateral solidification (SLS) method.

Type
Outstanding Meeting Papers
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Sameshima, T., Usui, S., Sekiya, M.: XeCl Excimer laser annealing used in the fabrication of poly-Si TFT’s. IEEE Electron Device Lett. 7, 276 1986CrossRefGoogle Scholar
2Gosain, D., Noguchi, T., Usui, S.: High mobility thin film transistors fabricated on a plastic substrate at a processing temperature of 110 °C. Jpn. J. Appl. Phys. 39, L179 2000CrossRefGoogle Scholar
3Kim, H.J., Im, J.S.: New excimer-laser-crystallization method for producing large-grained and grain boundary-location-controlled Si films for thin film transistors. Appl. Phys. Lett. 68, 1513 1996CrossRefGoogle Scholar
4Ishikawa, K., Ozawa, M., Oh, C., Matsumura, M.: Excimer-laser-induced lateral-growth of silicon thin-films. Jpn. J. Appl. Phys. 37, 731 1998CrossRefGoogle Scholar
5Oh, C.H., Ozawa, M., Matsumura, M.: A novel phase-modulated excimer-laser crystallization method of silicon thin films. Jpn. J. Appl. Phys. 37, L492 1998Google Scholar
6Mariucci, L., Carluccio, R., Pecora, A., Foglietti, V., Fortunato, G., Sala, D.D.: A two-pass excimer laser annealing process to control amorphous silicon crystallization. Jpn. J. Appl. Phys. 38, L907 1999Google Scholar
7Yeh, W., Ke, D.: Location control of super lateral growth grains in excimer laser crystallization of silicon thin films by microlight beam seeding. Jpn. J. Appl. Phys. 45, L970 2006CrossRefGoogle Scholar
8Sposili, R.S., Im, J.S.: Sequential lateral solidification of thin silicon films on SiO2. Appl. Phys. Lett. 69, 2864 1996CrossRefGoogle Scholar
9Im, J.S., Kim, H.J., Thompson, M.O.: Phase transformation mechanisms involved in excimer laser crystallization of amorphous silicon films. Appl. Phys. Lett. 63, 1969 1993CrossRefGoogle Scholar
10Im, J.S., Kim, H.J.: On the super lateral growth phenomenon observed in excimer laser-induced crystallization of thin Si films. Appl. Phys. Lett. 64, 2303 1994CrossRefGoogle Scholar
11Kuriyama, H., Kiyama, S., Noguchi, S., Kuwahara, T., Ishida, S., Nohda, T., Sano, K., Iwata, H., Kawata, H., Osumi, M., Tsuda, S., Nakano, S., Kuwano, Y.: Enlargement of poly-Si film grain size by excimer laser annealing and its application to high-performance poly-Si thin film transistor. Jpn. J. Appl. Phys. 30, 3700 1991CrossRefGoogle Scholar
12Ishihara, R., Yeh, W., Hattori, T., Matsumura, M.: Effects of light pulse duration on excimer-laser crystallization characteristics of silicon thin films. Jpn. J. Appl. Phys. 34, 1759 1995CrossRefGoogle Scholar
13Fogarassy, E., De Unamuni, S., Prevot, B., Harrer, T., Maresch, S.: Experimental and numerical analysis of surface melt dynamics in 200 ns-excimer laser crystallization of a-Si films on glass. Thin Solid Films 383, 48 2001CrossRefGoogle Scholar
14Yeh, W., Matsumura, M.: Preparation of giant-grain seed layer for poly-silicon thin-film solar cells. Jpn. J. Appl. Phys. 38, L110 1999Google Scholar
15Yeh, W., Sano, Y., Hattori, T., Matsumura, M.: Excimer-laser-processed ultralarge grain-growth for Si thin-film solar cells, 16th European Photovoltaic Solar Energy Conference, (Glasgow, UK, 2000)Google Scholar
16Yeh, W., Matsumura, M.: Proposed sample structure for marked enlargement of excimer-laser-induced lateral grain growth in Si thin films. Jpn. J. Appl. Phys. 41, 1909 2002CrossRefGoogle Scholar
17Shimizu, K., Sugiura, O., Matsumura, M.: High-mobility poly-Si thin-film transistors fabricated by a novel excimer laser crystallization method. IEEE Trans. Electron. Devices 40, 112 1993CrossRefGoogle Scholar
18Yeh, W.: Preparation of giant grain poly-Si thin film by room temperature excimer laser annealing, Digest of the International Workshop on the 2002 AM LCD Conference, (Business Center for Academic Societies of Japan, Tokyo, 2002), p. 153Google Scholar
19Yeh, W., Huang, H., Niu, I., Chen, C.: Light-absorptive underlayer-enhanced superlateral growth in excimer laser crystallization of amorphous silicon film. Jpn. J. Appl. Phys. 46, 1466 2007CrossRefGoogle Scholar
20Ozawa, M., Oh, C.H., Matsumura, M.: Two-dimensionally position-controlled excimer-laser-crystallization of silicon thin films on glassy substrate. Jpn. J. Appl. Phys. 38, 5700 1999CrossRefGoogle Scholar
21Im, J.S., Kim, H.J.: On the super lateral growth phenomenon observed in excimer laser-induced crystallization of thin Si films. Appl. Phys. Lett. 64, 2303 1994CrossRefGoogle Scholar
22Polman, A., Stolk, P.A., Mous, D.J.W., Sinke, W.C., Bulle-Lieuwma, C.W.T., Vandenhoudt, D.E.W.: Pulsed-laser crystallization of amorphous silicon layers buried in a crystalline matrix. J. Appl. Phys. 67, 4024 1990CrossRefGoogle Scholar
23Voogt, F.C., Ishihara, R., Tichelaar, F.D.: Melting and crystallization behavior of low-pressure chemical-vapor-deposition amorphous Si films during excimer-laser annealing. J. Appl. Phys. 95, 2873 2004CrossRefGoogle Scholar
24Stiffler, S.R., Thompson, M.O., Peercy, P.S.: Transient nucleation following pulsed-laser melting of thin silicon films. Phys. Rev. B 43, 9851 1991CrossRefGoogle ScholarPubMed
25Yeh, W., Zhuang, C., Ke, D.: Growth rate measurement of lateral grains in silicon film during excimer laser annealing. Jpn. J. Appl. Phys. 46, L611 2007CrossRefGoogle Scholar
26Legrand, B., Agache, V., Nys, J.P., Senez, V., Stievenard, D.: Formation of silicon islands on a silicon on insulator substrate upon thermal annealing. Appl. Phys. Lett. 76, 3271 2000CrossRefGoogle Scholar
27Legrand, B., Agache, V., Melin, T., Nys, J.P., Senez, V., Stievenard, D.: Thermally assisted formation of silicon islands on a silicon-on-insulator substrate. J. Appl. Phys. 91, 106 2002CrossRefGoogle Scholar
28Danielson, D.T., Sparacin, D.K., Michel, J., Kimerling, L.C.: Surface-energy-driven dewetting theory of silicon-on-insulator agglomeration. J. Appl. Phys. 100, 083507 2006CrossRefGoogle Scholar
29Geis, M.W., Smith, H.I., Tsaur, B., Fan, J.C.C., Silversmith, D.J., Mountain, R.W.: Zone-melting recrystallization of Si films with a moveable-strip-heater oven. J. Electrochem. Soc. 129, 2812 1982CrossRefGoogle Scholar