Skip to main content Accessibility help
×
Home

Lightweight complex metal hydrides for Li-, Na-, and Mg-based batteries

  • Matylda N. Guzik (a1), Rana Mohtadi (a2) and Sabrina Sartori (a1)

Abstract

Energy density and safety are the main factors that govern the development of the rechargeable battery technology. Currently, batteries beyond typical Li-ion batteries such as those based on solid-state electrolytes (SSEs) or other active elements (e.g., Na or Mg) are being examined as alternatives. For example, SSEs that would enable stable and reliable operation of all-solid-state Li-, Na-, and Mg-based batteries, with preferably improved capacity, are considered to be one of the most desired inventions. Lightweight complex metal hydrides are a family of solid compounds that were recently discovered to have extraordinary ionic conductivities and, in some cases, electrochemical properties that enabled battery reversibility. Consequently, they have become one of the promising electrolyte materials for future development of electrochemical storage devices. In this work, we present an overview of a wide range of lightweight hydride-based materials that could be used as electrolytes and/or anodes for mono-/divalent batteries and have a pivotal role in the implementation of new technological solutions in the field of electrochemistry.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: sabrina.sartori@its.uio.no

Footnotes

Hide All

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

Footnotes

References

Hide All
1.Armand, M. and Tarascon, J.M.: Building better batteries. Nature 451, 652 (2008).
2.Choi, J.W. and Aurbach, D.: Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016).
3.Mohtadi, R. and Mizuno, F.: Magnesium batteries: Current state of the art, issues and future perspectives. Beilstein J. Nanotechnol. 5, 1291 (2014).
4.Manthiram, A., Yu, X., and Wang, S.: Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017).
5.Tutusaus, O. and Mohtadi, R.: Paving the way towards highly stable and practical electrolytes for rechargeable magnesium batteries. ChemElectroChem 2, 51 (2015).
6.Mohtadi, R. and Orimo, S-I.: The renaissance of hydrides as energy materials. Nat. Rev. Mater. 2, 16091 (2016).
7.Orimo, S-I., Nakamori, Y., Eliseo, J.R., Züttel, A., and Jensen, C.M.: Complex hydrides for hydrogen storage. Chem. Rev. 107, 4111 (2007).
8.Paskevicius, M., Jepsen, L.H., Schouwink, P., Cerny, R., Ravnsbaek, D.B., Filinchuk, Y., Dornheim, M., Besenbacherf, F., and Jensen, T.R.: Metal borohydrides and derivatives—Synthesis, structure and properties. Chem. Soc. Rev. 46, 1565 (2017).
9.Matsuo, M., Nakamori, Y., Orimo, S-I., Maekawa, H., and Takamura, H.: Lithium superionic conduction in lithium borohydride accompanied by structural transition. Appl. Phys. Lett. 91, 224103 (2007).
10.Nakamori, Y., Orimo, S-I., and Tsutaoka, T.: Dehydriding reaction of metal hydrides and alkali borohydrides enhanced by microwave irradiation. Appl. Phys. Lett. 88, 112104 (2006).
11.Matsuo, M. and Orimo, S-I.: Lithium fast-ionic conduction in complex hydrides: Review and prospects. Adv. Energy Mater. 1, 161 (2011).
12.Unemoto, A., Matsuo, M., and Orimo, S-I.: Complex hydrides for electrochemical energy storage. Adv. Funct. Mater. 24, 2267 (2014).
13.Sveinbjornsson, D., Myrdal, J.S.G., Blanchard, D., Bentzen, J.J., Hirata, T., Mogensen, M.B., Norby, P., Orimo, S-I., and Vegge, T.: Effect of heat treatment on the lithium ion conduction of the LiBH4–Lil solid solution. J. Phys. Chem. C 117, 3249 (2013).
14.Maekawa, H., Matsuo, M., Takamura, H., Ando, M., Noda, Y., Karahashi, T., and Orimo, S-I.: Halide-stabilized LiBH4, a room-temperature lithium fast-ion conductor. J. Am. Chem. Soc. 131, 894 (2009).
15.Miyazaki, R., Karahashi, T., Kumatani, N., Noda, Y., Ando, M., Takamura, H., Matsuo, M., Orimo, S-I., and Maekawa, H.: Room temperature lithium fast-ion conduction and phase relationship of LiI stabilized LiBH4. Solid State Ionics 192, 143 (2011).
16.Cascallana-Matias, I., Keen, D.A., Cussen, E.J., and Gregory, D.H.: Phase behavior in the LiBH4–LiBr system and structure of the anion-stabilized fast ionic, high temperature phase. Chem. Mater. 27, 7780 (2015).
17.Matsuo, M., Takamura, H., Maekawa, H., Li, H.W., and Orimo, S-I.: Stabilization of lithium superionic conduction phase and enhancement of conductivity of LiBH4 by LiCl addition. Appl. Phys. Lett. 94, 084103 (2009).
18.Oguchi, H., Matsuo, M., Sato, T., Takamura, H., Maekawa, H., Kuwano, H., and Orimo, S-I.: Lithium-ion conduction in complex hydrides LiAlH4 and Li3AlH6. J. Appl. Phys. 107, 096104 (2010).
19.Unemoto, A., Nogami, G., Tazawa, M., Taniguchi, M., and Orimo, S-I.: Development of 4V-class bulk-type all-solid-state lithium rechargeable batteries by a combined use of complex hydride and sulfide electrolytes for room temperature operation. Mater. Trans., JIM 58, 1063 (2017).
20.Matsuo, M., Remhof, A., Martelli, P., Caputo, R., Ernst, M., Miura, Y., Sato, T., Oguchi, H., Maekawa, H., Takamura, H., Borgschulte, A., Zuttel, A., and Orimo, S-I.: Complex hydrides with (BH4) and (NH2) anions as new lithium fast-ion conductors. J. Am. Chem. Soc. 131, 16389 (2009).
21.Li, W., Wu, G.T., Xiong, Z.T., Feng, Y.P., and Chen, P.: Li+ ionic conductivities and diffusion mechanisms in Li-based imides and lithium amide. Phys. Chem. Chem. Phys. 14, 1596 (2012).
22.Yan, Y., Kühnel, R-S., Remhof, A., Duchêne, L., Reyes, E.C., Rentsch, D., Łodziana, Z., and Battaglia, C.: A lithium amide-borohydride solid-state electrolyte with lithium-ion conductivities comparable to liquid electrolytes. Adv. Energy Mater. 7, 1700294 (2017).
23.Wolczyk, A., Paik, B., Sato, T., Nervi, C., Brighi, M., GharibDoust, S.P., Chierotti, M., Matsuo, M., Li, G.Q., Gobetto, R., Jensen, T.R., Cerny, R., Orimo, S-I., and Baricco, M.: Li5(BH4)3NH: Lithium-rich mixed anion complex hydride. J. Phys. Chem. C 121, 11069 (2017).
24.Roedern, E., Lee, Y.S., Ley, M.B., Park, K., Cho, Y.W., Skibsted, J., and Jensen, T.R.: Solid state synthesis, structural characterization and ionic conductivity of bimetallic alkali-metal yttrium borohydrides MY(BH4)4 (M = Li and Na). J. Mater. Chem. A 4, 8793 (2016).
25.Ley, M.B., Ravnsbæk, D.B., Filinchuk, Y., Lee, Y-S., Janot, R., Cho, Y.W., Skibsted, J., and Jensen, T.R.: LiCe(BH4)3Cl, a new lithium-ion conductor and hydrogen storage material with isolated tetranuclear anionic clusters. Chem. Mater. 24, 1654 (2012).
26.Lee, Y-S., Ley, M.B., Jensen, T.R., and Cho, Y.W.: Lithium ion disorder and conduction mechanism in LiCe(BH4)3Cl. J. Phys. Chem. C 120, 19035 (2016).
27.GharibDoust, S.P., Brighi, M., Sadikin, Y., Ravnsbaek, D.B., Cerny, R., Skibsted, J., and Jensen, T.R.: Synthesis, structure, and Li-ion conductivity of LiLa(BH4)3X, X = Cl, Br, I. J. Phys. Chem. C 121, 19010 (2017).
28.Cerny, R., Schouwink, P., Sadikin, Y., Stare, K., Smrcok, L., Richter, B., and Jensen, T.R.: Trimetallic borohydride Li3MZn5(BH4)15 (M = Mg, Mn) containing two weakly interconnected frameworks. Inorg. Chem. 52, 9941 (2013).
29.Sadikin, Y., Stare, K., Schouwink, P., Ley, M.B., Jensen, T.R., Meden, A., and Cerny, R.: Alkali metal—yttrium borohydrides: The link between coordination of small and large rare-earth. J. Solid State Chem. 225, 231 (2015).
30.Brighi, M., Schouwink, P., Sadikin, Y., and Cerny, R.: Fast ion conduction in garnet-type metal borohydrides Li3K3Ce2(BH4)12 and Li3K3La2(BH4)12. J. Alloys Compd. 662, 388 (2016).
31.Didelot, E. and Cerny, R.: Ionic conduction in bimetallic borohydride borate, LiCa3(BH4)(BO3)2. Solid State Ionics 305, 16 (2017).
32.Zhang, T., Wang, Y., Song, T., Miyaoka, H., Shinzato, K., Miyaoka, H., Ichikawa, T., Shi, S., Zhang, X., Isobe, S., Hashimoto, N., and Kojima, Y.: Ammonia, a switch for controlling high ionic conductivity in lithium borohydride ammoniates. Joule 2, 1522 (2018).
33.Blanchard, D., Nale, A., Sveinbjornsson, D., Eggenhuisen, T.M., Verkuijlen, M.H.W., Suwarno, , Vegge, T., Kentgens, A.P.M., and de Jongh, P.E.: Nanoconfined LiBH4 as a fast lithium ion conductor. Adv. Funct. Mater. 25, 184 (2015).
34.Choi, Y.S., Lee, Y.S., Oh, K.H., and Cho, Y.W.: Interface-enhanced Li ion conduction in a LiBH4–SiO2 solid electrolyte. Phys. Chem. Chem. Phys. 18, 22540 (2016).
35.Choi, Y.S., Lee, Y.S., Choi, D.J., Chae, K.H., Oh, K.H., and Cho, Y.W.: Enhanced Li ion conductivity in LiBH4–Al2O3 mixture via interface engineering. J. Phys. Chem. C 121, 26209 (2017).
36.Teprovich, J.A., Colon-Mercado, H.R., Ward, P.A., Peters, B., Giri, S., Zhou, J., Greenway, S., Compton, R.N., Jena, P., and Zidan, R.: Experimental and theoretical analysis of fast lithium ionic conduction in a LiBH4–C60 nanocomposite. J. Phys. Chem. C 118, 21755 (2014).
37.Zhan, L., Zhang, Y., Zhuang, X., Fang, H., Zhu, Y., Guo, X., Chen, J., Wang, Z., and Li, L.: Ionic conductivities of lithium borohydride–lithium nitride composites. Solid State Ionics 304, 150 (2017).
38.Zhang, Y., Zhan, L.Y., Zhuang, X.Y., Zhu, Y.F., Wan, N., Guo, X.L., Chen, J., Wang, Z.M., and Li, L.Q.: The ionic conductivities, stabilities and ionic mobilities of xLiBH4–Li2NH (x = 1, 2, 4) composites as fast ion conductor. J. Alloys Compd. 695, 2894 (2017).
39.Wang, H., Cao, H.J., Zhang, W.J., Chen, J., Wu, H., Pistidda, C., Ju, X.H., Zhou, W., Wu, G.T., Etter, M., Klassen, T., Dornheim, M., and Chen, P.: Li2NH–LiBH4: A complex hydride with near ambient hydrogen adsorption and fast lithium ion conduction. Chem. - Eur. J. 24, 1342 (2018).
40.Sveinbjörnsson, D., Blanchard, D., Myrdal, J.S.G., Younesi, R., Viskinde, R., Riktor, M.D., Norby, P., and Vegge, T.: Ionic conductivity and the formation of cubic CaH2 in the LiBH4–Ca(BH4)2 composite. J. Solid State Chem. 211, 81 (2014).
41.Xiang, M., Zhang, Y., Zhan, L., Zhu, Y., Guo, X., Chen, J., Wang, Z., and Li, L.: Study on xLiBH4–NaBH4 (x = 1.6, 2.3, and 4) composites with enhanced lithium ionic conductivity. J. Alloys Compd. 729, 936 (2017).
42.López-Aranguren, P., Berti, N., Dao, A.H., Zhang, J., Cuevas, F., Latroche, M., and Jordy, C.: An all-solid-state metal hydride—Sulfur lithium-ion battery. J. Power Sources 357, 56 (2017).
43.Xiang, M., Zhang, Y., Zhu, Y., Guo, X., Chen, J., and Li, L.: Ternary LiBH4–NaBH4–MgH2 composite as fast ionic conductor. Solid State Ionics 324, 109 (2018).
44.Xiang, M., Zhang, Y., Lin, H., Zhu, Y., Guo, X., Chen, J., and Li, L.: LiBH4–NaX (X = Cl, I) composites with enhanced lithium ionic conductivity. J. Alloys Compd. 764, 307 (2018).
45.Unemoto, A., Wu, H., Udovic, T.J., Matsuo, M., Ikeshoji, T., and Orimo, S-I.: Fast lithium-ionic conduction in a new complex hydride–sulphide crystalline phase. Chem. Commun. 52, 564 (2016).
46.Yamauchi, A., Sakuda, A., Hayashi, A., and Tatsumisago, M.: Preparation and ionic conductivities of (100 − x)(0.75Li2S·0.25P2S5xLiBH4 glass electrolytes. J. Power Sources 244, 707 (2013).
47.El Kharbachi, A., Hu, Y., Yoshida, K., Vajeeston, P., Kim, S., Sorby, M.H., Orimo, S-I., Fjellvag, H., and Hauback, B.C.: Lithium ionic conduction in composites of Li(BH4)0.75I0.25 and amorphous 0.75Li2S·0.25P2S5 for battery applications. Electrochim. Acta 278, 332 (2018).
48.Boukamp, B.A. and Huggins, R.A.: Ionic conductivity in lithium imide. Phys. Lett. A 72, 464 (1979).
49.Rijssenbeek, J., Gao, Y., Hanson, J., Huang, Q., Jones, C., and Toby, B.: Crystal structure determination and reaction pathway of amide-hydride mixtures. J. Alloys Compd. 454, 233 (2008).
50.Tang, W.S., Matsuo, M., Wu, H., Stavila, V., Unemoto, A., Orimo, S-I., and Udovic, T.J.: Stabilizing lithium and sodium fast-ion conduction in solid polyhedral-borate salts at device-relevant temperatures. Energy Storage Mater. 4, 79 (2016).
51.Teprovich, J.A., Colon-Mercado, H., Washington, A.L. Ii, Ward, P.A., Greenway, S., Missimer, D.M., Hartman, H., Velten, J., Christian, J.H., and Zidan, R.: Bi-functional Li2B12H12 for energy storage and conversion applications: Solid-state electrolyte and luminescent down-conversion dye. J. Mater. Chem. A 3, 22853 (2015).
52.Kim, S., Toyama, N., Oguchi, H., Sato, T., Takagi, S., Ikeshoji, T., and Orimo, S-I.: Fast lithium-ion conduction in atom-deficient closo-type complex hydride solid electrolytes. Chem. Mater. 30, 386 (2018).
53.Yan, Y., Rentsch, D., Battaglia, C., and Remhof, A.: Synthesis, stability and Li-ion mobility of nanoconfined Li2B12H12. Dalton Trans. 46, 12434 (2017).
54.He, L., Li, H-W., Nakajima, H., Tumanov, N., Filinchuk, Y., Hwang, S-J., Sharma, M., Hagemann, H., and Akiba, E.: Synthesis of a bimetallic dodecaborate LiNaB12H12 with otstanding suerionic cnductivity. Chem. Mater. 27, 5483 (2015).
55.Tang, W.S., Unemoto, A., Zhou, W., Stavila, V., Matsuo, M., Wu, H., Orimo, S-I., and Udovic, T.J.: Unparalleled lithium and sodium superionic conduction in solid electrolytes with large monovalent cage-like anions. Energy Environ. Sci. 8, 3637 (2015).
56.Tang, W., Matsuo, M., Wu, H., Stavila, V., Zhou, W., Talin, A., Soloninin, A.V., Skoryunov, R.V., Babanova, O.A., Skripov, A.V., Unemoto, A., Orimo, S-I., and Udovic, T.J.: Liquid‐like ionic conduction in solid lithium and sodium monocarba‐closo‐decaborates near or at room temperature. Adv. Energy Mater. 6, 1502237 (2016).
57.Tang, W.S., Yoshida, K., Soloninin, A.V., Skoryunov, R.V., Babanova, O.A., Skripov, A.V., Dimitrievska, M., Stavila, V., Orimo, S-I., and Udovic, T.J.: Stabilizing superionic-conducting structures via mixed-anion solid solutions of monocarba-closo-borate salts. ACS Energy Lett. 1, 659 (2016).
58.Matsuo, M., Kuromoto, S., Sato, T., Oguchi, H., Takamura, H., and Orimo, S-I.: Sodium ionic conduction in complex hydrides with [BH4] and [NH2] anions. Appl. Phys. Lett. 100, 203904 (2012).
59.Matsuo, M., Oguchi, H., Sato, T., Takamura, H., Tsuchida, E., Ikeshoji, T., and Orimo, S-I.: Sodium and magnesium ionic conduction in complex hydrides. J. Alloys Compd. 580, S98 (2013).
60.Sadikin, Y., Brighi, M., Schouwink, P., and Cerny, R.: Superionic conduction of sodium and lithium in anion-mixed hydroborates Na3BH4B12H12 and (Li0.7Na0.3)3BH4B12H12. Adv. Energy Mater. 5, 1501016 (2015).
61.He, L., Lin, H., Li, H-F., Filinchuk, Y., Zhang, J., Liu, Y., Yang, M., Hou, Y., Deng, Y., Li, H-W., Shao, H., Wang, L., and Lu, Z.: Na3NH2B12H12 as high performance solid electrolyte for all-solid-state Na-ion batteries. J. Power Sources 396, 574 (2018).
62.Oguchi, H., Matsuo, M., Kuronnoto, S., Kuwano, H., and Orimo, S-I.: Sodium-ion conduction in complex hydrides NaAlH4 and Na3AlH6. J. Appl. Phys. 111, 036102 (2012).
63.Udovic, T.J., Matsuo, M., Unemoto, A., Verdal, N., Stavila, V., Skripov, A.V., Rush, J.J., Takamura, H., and Orimo, S-I.: Sodium superionic conduction in Na2B12H12. Chem. Commun. 50, 3750 (2014).
64.Hansen, B.R.S., Paskevicius, M., Jørgensen, M., and Jensen, T.R.: Halogenated sodium-closo-dodecaboranes as solid-state ion conductors. Chem. Mater. 29, 3423 (2017).
65.Udovic, T.J., Matsuo, M., Tang, W.S., Wu, H., Stavila, V., Soloninin, A.V., Skoryunov, R.V., Babanova, O.A., Skripov, A.V., Rush, J.J., Unemoto, A., Takamura, H., and Orimo, S-I.: Exceptional superionic conductivity in disordered sodium decahydro-closo-decaborate. Adv. Mater. 26, 7622 (2014).
66.Duchene, L., Kuhnel, R.S., Rentsch, D., Remhof, A., Hagemann, H., and Battaglia, C.: A highly stable sodium solid-state electrolyte based on a dodeca/deca-borate equimolar mixture. Chem. Commun. 53, 4195 (2017).
67.Yoshida, K., Sato, T., Unemoto, A., Matsuo, M., Ikeshoji, T., Udovic, T.J., and Orimo, S-I.: Fast sodium ionic conduction in Na2B10H10–Na2B12H12 pseudo-binary complex hydride and application to a bulk-type all-solid-state battery. Appl. Phys. Lett. 110, 103901 (2017).
68.Tang, W.S., Dimitrievska, M., Stavila, V., Zhou, W., Wu, H., Talin, A.A., and Udovic, T.J.: Order–disorder transitions and superionic conductivity in the sodium nido-undeca(carba)borates. Chem. Mater. 29, 10496 (2017).
69.Higashi, S., Miwa, K., Aoki, M., and Takechi, K.: A novel inorganic solid state ion conductor for rechargeable Mg batteries. Chem. Commun. 50, 1320 (2014).
70.Roedern, E., Kühnel, R-S., Remhof, A., and Battaglia, C.: Magnesium ethylenediamine borohydride as solid-state electrolyte for magnesium batteries. Sci. Rep. 7, 46189 (2017).
71.Shao, Y., Liu, T., Li, G., Gu, M., Nie, Z., Engelhard, M., Xiao, J., Lv, D., Wang, C., Zhang, J-G., and Liu, J.: Coordination chemistry in magnesium battery electrolytes: How ligands affect their performance. Sci. Rep. 3, 3130 (2013).
72.Tuerxun, F., Abulizi, Y., NuLi, Y.N., Su, S.J., Yang, J., and Wang, J.L.: High concentration magnesium borohydride/tetraglyme electrolyte for rechargeable magnesium batteries. J. Power Sources 276, 255 (2015).
73.Su, S.J., Nuli, Y., Wang, N., Yusipu, D., Yang, J., and Wang, J.L.: Magnesium borohydride-based electrolytes containing 1-butyl-1-methylpiperidinium bis(trifluoromethyl sulfonyl)imide ionic liquid for rechargeable magnesium batteries. J. Electrochem. Soc. 163, D682 (2016).
74.Xu, H.M., Zhang, Z.H., Li, J.J., Qiao, L.X., Lu, C.L., Tang, K., Dong, S.M., Ma, J., Liu, Y.J., Zhou, X.H., and Cui, G.L.: Multifunctional additives improve the electrolyte properties of magnesium borohydride toward magnesium–sulfur batteries. ACS Appl. Mater. Interfaces 10, 23757 (2018).
75.Tutusaus, O., Mohtadi, R., Arthur, T.S., Mizuno, F., Nelson, E.G., and Sevryugina, Y.V.: An efficient halogen‐free electrolyte for use in rechargeable magnesium batteries. Angew. Chem., Int. Ed. 54, 7900 (2015).
76.Carter, T.J., Mohtadi, R., Arthur, T.S., Mizuno, F., Zhang, R., Shirai, S., and Kampf, J.W.: Boron clusters as highly stable magnesium-battery electrolytes. Angew. Chem., Int. Ed. 126, 3237 (2014).
77.Takahashi, K., Hattori, K., Yamazaki, T., Takada, K., Matsuo, M., Orimo, S-I., Maekawa, H., and Takamura, H.: All-solid-state lithium battery with LiBH4 solid electrolyte. J. Power Sources 226, 61 (2013).
78.Sveinbjörnsson, D., Christiansen, A.S., Viskinde, R., Norby, P., and Vegge, T.: The LiBH4–LiI solid solution as an electrolyte in an all-solid-state battery. J. Electrochem. Soc. 161, A1432 (2014).
79.Yoshida, K., Suzuki, S., Kawaji, J., Unemoto, A., and Orimo, S-I.: Complex hydride for composite negative electrode—Applicable to bulk-type all-solid-state Li-ion battery with wide temperature operation. Solid State Ionics 285, 96 (2016).
80.Suzuki, S., Kawaji, J., Yoshida, K., Unemoto, A., and Orimo, S-I.: Development of complex hydride-based all-solid-state lithium ion battery applying low melting point electrolyte. J. Power Sources 359, 97 (2017).
81.Unemoto, A., Yasaku, S., Nogami, G., Tazawa, M., Taniguchi, M., Matsuo, M., Ikeshoji, T., and Orimo, S-I.: Development of bulk-type all-solid-state lithium-sulfur battery using LiBH4 electrolyte. Appl. Phys. Lett. 105, 083901 (2014).
82.Unemoto, A., Chen, C., Wang, Z., Matsuo, M., Ikeshoji, T., and Orimo, S-I.: Pseudo-binary electrolyte, LiBH4–LiCl, for bulk-type all-solid-state lithium–sulfur battery. Nanotechnology 26, 254001 (2015).
83.Das, S., Ngene, P., Norby, P., Vegge, T., de Jongh, P.E., and Blanchard, D.: All-solid-state lithium–sulfur battery based on a nanoconfined LiBH4 electrolyte. J. Electrochem. Soc. 163, A2029 (2016).
84.Nguyen, J., Fleutot, B., and Janot, R.: Investigation of the stability of metal borohydrides-based compounds LiM(BH4)3Cl (M = La, Ce, Gd) as solid electrolytes for Li–S batteries. Solid State Ionics 315, 26 (2018).
85.Unemoto, A., Ikeshoji, T., Yasaku, S., Matsuo, M., Stavila, V., Udovic, T.J., and Orimo, S-I.: Stable interface formation between TiS2 and LiBH4 in bulk-type all-solid-state lithium batteries. Chem. Mater. 27, 5407 (2015).
86.El Kharbachi, A., Hu, Y., Sorby, M.H., Maehlen, J.P., Vullum, P.E., Fjellvag, H., and Hauback, B.C.: Reversibility of metal-hydride anodes in all-solid-state lithium secondary battery operating at room temperature. Solid State Ionics 317, 263 (2018).
87.Zeng, L., Kawahito, K., Ikeda, S., Ichikawa, T., Miyaoka, H., and Kojima, Y.: Metal hydride-based materials towards high performance negative electrodes for all-solid-state lithium-ion batteries. Chem. Commun. 51, 9773 (2015).
88.Zeng, L., Kawahito, K., and Ichikawa, T.: Metal Hydride-Based Materials as Negative Electrode for All-Solid-State Lithium-Ion Batteries (IntechOpen, London, U.K., 2016).
89.Zeng, L., Ichikawa, T., Kawahito, K., Miyaoka, H., and Kojima, Y.: Bulk-type all-solid-state lithium-ion batteries: Remarkable performances of a carbon nanofiber-supported MgH2 composite electrode. ACS Appl. Mater. Interfaces 9, 2261 (2017).
90.El Kharbachi, A., Uesato, H., Kawai, H., Wenner, S., Miyaoka, H., Sørby, M.H., Fjellvåg, H., Ichikawa, T., and Hauback, B.C.: MgH2–CoO: A conversion-type composite electrode for LiBH4-based all-solid-state lithium ion batteries. RSC Adv. 8, 23468 (2018).
91.Huen, P. and Ravnsbæk, D.B.: All-solid-state lithium batteries—The Mg2FeH6-electrode LiBH4-electrolyte system. Electrochem. Commun. 87, 81 (2018).
92.Weeks, A.J., Tinkey, C.S., Ward, A.P., Lascola, R., Zidan, R., and Teprovich, A.J.: Investigation of the reversible lithiation of an oxide free aluminum anode by a LiBH4 solid state electrolyte. Inorganics 5, 1 (2017).
93.Singh, R., Kumari, P., Rathore, R.K., Shinzato, K., Ichikawa, T., Verma, A.S., Saraswat, V.K., Awasthi, K., Jain, A., and Kumar, M.: LiBH4 as solid electrolyte for Li-ion batteries with Bi2Te3 nanostructured anode. Int. J. Hydrogen Energy 43, 21709 (2018).
94.Meggiolaro, D., Farina, L., Silvestri, L., Panero, S., Brutti, S., and Reale, P.: Lightweight borohydrides electro-activity in lithium cells. Energies 9, 238 (2016).
95.Silvestri, L., Forgia, S., Farina, L., Meggiolaro, D., Panero, S., La Barbera, A., Brutti, S., and Reale, P.: Lithium alanates as negative electrodes in lithium-ion batteries. ChemElectroChem 2, 877 (2015).
96.Silvestri, L., Farina, L., Meggiolaro, D., Panero, S., Padella, F., Brutti, S., and Reale, P.: Reactivity of sodium alanates in lithium batteries. J. Phys. Chem. C 119, 28766 (2015).
97.Silvestri, L., Paolone, A., Cirrincione, L., Stallworth, P., Greenbaum, S., Panero, S., Brutti, S., and Reale, P.: NaAlH4 nanoconfinement in a mesoporous carbon for application in lithium ion batteries. J. Electrochem. Soc. 164, A1120 (2017).
98.Huen, P., Peru, F., Charalambopoulou, G., Steriotis, T.A., Jensen, T.R., and Ravnsbæk, D.B.: Nanoconfined NaAlH4 conversion electrodes for Li batteries. ACS Omega 2, 1956 (2017).
99.Duchene, L., Kuhnel, R.S., Stilp, E., Cuervo Reyes, E., Remhof, A., Hagemann, H., and Battaglia, C.: A stable 3 V all-solid-state sodium-ion battery based on a closo-borate electrolyte. Energy Environ. Sci. 10, 2609 (2017).
100.Shao, Y.Y., Rajput, N.N., Hu, J.Z., Hu, M., Liu, T.B., Wei, Z.H., Gu, M., Deng, X.C., Xu, S.C., Han, K.S., Wang, J.L., Nie, Z.M., Li, G.S., Zavadil, K.R., Xiao, J., Wang, C.M., Henderson, W.A., Zhang, J.G., Wang, Y., Mueller, K.T., Persson, K., and Liu, J.: Nanocomposite polymer electrolyte for rechargeable magnesium batteries. Nano Energy 12, 750 (2015).
101.Zhang, Y., Xie, J., Han, Y., and Li, C.: Dual-salt Mg-based batteries with conversion cathodes. Adv. Funct. Mater. 25, 7300 (2015).
102.Ikeshoji, T., Tsuchida, E., Takagi, S., Matsuo, M., and Orimo, S-I.: Magnesium ion dynamics in Mg(BH4)2(1−x)X2x (X = Cl or AlH4) from first-principles molecular dynamics simulations. RSC Adv. 4, 1366 (2014).
103.Miwa, K., Ohba, N., Towata, S., Nakamori, Y., and Orimo, S-I.: First-principles study on lithium borohydride LiBH4. Phys. Rev. B: Condens. Matter 69, 245120 (2004).
104.Orgaz, E., Membrillo, A., Castaneda, R., and Aburto, A.: Electronic structure of ternary hydrides based on light elements. J. Alloys Compd. 404, 176 (2005).
105.Buchter, F., Lodziana, Z., Mauron, P., Remhof, A., Friedrichs, O., Borgschulte, A., Zuttel, A., Sheptyakov, D., Strassle, T., and Ramirez-Cuesta, A.J.: Dynamical properties and temperature induced molecular disordering of LiBH4 and LiBD4. Phys. Rev. B: Condens. Matter 78, 094302 (2008).
106.Remhof, A., Lodziana, Z., Martelli, P., Friedrichs, O., Zuttel, A., Skripov, A.V., Embs, J.P., and Strassle, T.: Rotational motion of BH4 units in MBH4 (M = Li, Na, K) from quasielastic neutron scattering and density functional calculations. Phys. Rev. B: Condens. Matter 81, 214304 (2010).
107.Stephenson, C.C., Rice, D.W., and Stockmayer, W.H.: Order-disorder transitions in the alkali borohydrides. J. Chem. Phys. 23, 1960 (1955).
108.Oguchi, H., Matsuo, M., Hummelshoj, J.S., Vegge, T., Norskov, J.K., Sato, T., Miura, Y., Takamura, H., Maekawa, H., and Orimo, S-I.: Experimental and computational studies on structural transitions in the LiBH4–LiI pseudobinary system. Appl. Phys. Lett. 94, 141912 (2009).
109.Skripov, A.V., Soloninin, A.V., Rude, L.H., Jensen, T.R., and Filinchuk, Y.: Nuclear magnetic resonance studies of reorientational motion and Li diffusion in LiBH4–LiI solid solutions. J. Phys. Chem. C 116, 26177 (2012).
110.Epp, V. and Wilkening, M.: Fast Li diffusion in crystalline LiBH4 due to reduced dimensionality: Frequency-dependent NMR spectroscopy. Phys. Rev. B: Condens. Matter 82, 020301 (2010).
111.Filinchuk, Y., Chernyshov, D., and Cerny, R.: Lightest borohydride probed by synchrotron X-ray diffraction: Experiment calls for a new theoretical revision. J. Phys. Chem. C 112, 10579 (2008).
112.Bunde, A., Dieterich, W., and Roman, E.: Dispersed ionic conductors and percolation theory. Phys. Rev. Lett. 55, 5 (1985).
113.Lee, Y.S., Filinchuk, Y., Lee, H.S., Suh, J.Y., Kim, J.W., Yu, J.S., and Cho, Y.W.: On the formation and the structure of the first bimetallic borohydride borate, LiCa3(BH4)(BO3)2. J. Phys. Chem. C 115, 10298 (2011).
114.Martelli, P., Remhof, A., Borgschulte, A., Ackermann, R., Strassle, T., Embs, J.P., Ernst, M., Matsuo, M., Orimo, S-I., and Zuttel, A.: Rotational motion in LiBH4/LiI solid solutions. J. Phys. Chem. A 115, 5329 (2011).
115.Skripov, A.V., Soloninin, A.V., Ley, M.B., Jensen, T.R., and Filinchuk, Y.: Nuclear magnetic resonance studies of BH4 reorientations and Li diffusion in LiLa(BH4)3Cl. J. Phys. Chem. C 117, 14965 (2013).
116.Jansen, M.: Volume effect or paddle-wheel mechanism—Fast alkali-metal ionic-conduction in solids with rotationally disordered complex anions. Angew. Chem., Int. Ed. 30, 1547 (1991).
117.Schouwink, P., Ley, M.B., Tissot, A., Hagemann, H., Jensen, T.R., Smrcok, L., and Cerny, R.: Structure and properties of complex hydride perovskite materials. Nat. Commun. 5, 5706 (2014).
118.Mohtadi, R.: High Li-ion conductivity in a hydride-type solid-state electrolyte: The ammonia effect. Chem 4, 1770 (2018).
119.Ngene, P., Adelhelm, P., Beale, A.M., de Jong, K.P., and de Jongh, P.E.: LiBH4/SBA-15 nanocomposites prepared by melt infiltration under hydrogen pressure: Synthesis and hydrogen sorption properties. J. Phys. Chem. C 114, 6163 (2010).
120.Verdal, N., Udovic, T.J., Rush, J.J., Liu, X.F., Majzoub, E.H., Vajo, J.J., and Gross, A.F.: Dynamical perturbations of tetrahydroborate anions in LiBH4 due to nanoconfinement in controlled-pore carbon scaffolds. J. Phys. Chem. C 117, 17983 (2013).
121.Li, W., Wu, G., Araújo, C.M., Scheicher, R.H., Blomqvist, A., Ahuja, R., Xiong, Z., Feng, Y., and Chen, P.: Li+ ion conductivity and diffusion mechanism in α-Li3N and β-Li3N. Energy Environ. Sci. 3, 1524 (2010).
122.Wu, G.T., Xiong, Z.T., Liu, T., Liu, Y.F., Hu, J.J., Chen, P., Feng, Y.P., and Wee, A.T.S.: Synthesis and characterization of a new ternary imide-Li2Ca(NH)2. Inorg. Chem. 46, 517 (2007).
123.Vaalma, C., Buchholz, D., Weil, M., and Passerini, S.: A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 3, 18013 (2018).
124.Somer, M., Acar, S., Koz, C., Kokal, I., Hohn, P., Cardoso-Gil, R., Aydemir, U., and Akselrud, L.: α- and β-Na2[BH4][NH2]: Two modifications of a complex hydride in the system NaNH2–NaBH4; syntheses, crystal structures, thermal analyses, mass and vibrational spectra. J. Alloys Compd. 491, 98 (2010).
125.Hooper, A.: Study of electrical properties of single crystal and polycrystalline β-alumina using complex plane analysis. J. Phys. D: Appl. Phys. 10, 1487 (1977).
126.Bohnke, O., Ronchetti, S., and Mazza, D.: Conductivity measurements on nasicon and nasicon-modified materials. Solid State Ionics 122, 127 (1999).
127.Hayashi, A., Noi, K., Sakuda, A., and Tatsumisago, M.: Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nat. Commun. 3, 856 (2012).
128.Mohtadi, R., Matsui, M., Arthur, T.S., and Hwang, S.J.: Magnesium borohydride: From hydrogen storage to magnesium battery. Angew. Chem., Int. Ed. Engl. 51, 9780 (2012).
129.Mohtadi, R., Remhof, A., and Jena, P.: Complex metal borohydrides: Multifunctional materials for energy storage and conversion. J. Phys.: Condens. Matter 28, 353001 (2016).
130.Amir, N., Vestfrid, Y., Chusid, O., Gofer, Y., and Aurbach, D.: Progress in nonaqueous magnesium electrochemistry. J. Power Sources 174, 1234 (2007).
131.Aurbach, D., Lu, Z., Schechter, A., Gofer, Y., Gizbar, H., Turgeman, R., Cohen, Y., Moshkovich, M., and Levi, E.: Prototype systems for rechargeable magnesium batteries. Nature 407, 724 (2000).
132.Yoo, H.D., Shterenberg, I., Gofer, Y., Gershinsky, G., Pour, N., and Aurbach, D.: Mg rechargeable batteries: An on-going challenge. Energy Environ. Sci. 6, 2265 (2013).
133.Matsui, M.: Study on electrochemically deposited Mg metal. J. Power Sources 196, 7048 (2011).
134.Aurbach, D., Cohen, Y., and Moshkovich, M.: The study of reversible magnesium deposition by in situ scanning tunneling microscopy. Electrochem. Solid-State Lett. 4, A113 (2001).
135.Muldoon, J., Bucur, C.B., Oliver, A.G., Sugimoto, T., Matsui, M., Kim, H.S., Allred, G.D., Zajicek, J., and Kotani, Y.: Electrolyte roadblocks to a magnesium rechargeable battery. Energy Environ. Sci. 5, 5941 (2012).
136.Wang, D., Gao, X., Chen, Y., Jin, L., Kuss, C., and Bruce, P.G.: Plating and stripping calcium in an organic electrolyte. Nat. Mater. 17, 16 (2017).
137.Paskevicius, M., Pitt, M.P., Brown, D.H., Sheppard, D.A., Chumphongphan, S., and Buckley, C.E.: First-order phase transition in the Li2B12H12 system. Phys. Chem. Chem. Phys. 15, 15825 (2013).
138.Skripov, A.V., Babanova, O.A., Soloninin, A.V., Stavila, V., Verdal, N., Udovic, T.J., and Rush, J.J.: Nuclear magnetic resonance study of atomic motion in A2B12H12 (A = Na, K, Rb, Cs): Anion reorientations and Na+ mobility. J. Phys. Chem. C 117, 25961 (2013).
139.Varley, J.B., Kweon, K., Mehta, P., Shea, P., Heo, T.W., Udovic, T.J., Stavila, V., and Wood, B.C.: Understanding ionic conductivity trends in polyborane solid electrolytes from ab initio molecular dynamics. ACS Energy Lett. 2, 250 (2017).
140.Kweon, K.E., Varley, J.B., Shea, P., Adelstein, N., Mehta, P., Heo, T.W., Udovic, T.J., Stavila, V., and Wood, B.C.: Structural, chemical, and dynamical frustration: Origins of superionic conductivity in closo-borate solid electrolytes. Chem. Mater. 29, 9142 (2017).
141.Kato, Y., Hori, S., Saito, T., Suzuki, K., Hirayama, M., Mitsui, A., Yonemura, M., Iba, H., and Kanno, R.: High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016).
142.Dimitrievska, M., Shea, P., Kweon, K.E., Bercx, M., Varley, J.B., Tang, W.S., Skripov, A.V., Stavila, V., Udovic, T.J., and Wood, B.C.: Carbon incorporation and anion dynamics as synergistic drivers for ultrafast diffusion in superionic LiCB11H12 and NaCB11H12. Adv. Energy Mater. 8, 1703422 (2018).
143.Kar, M., Tutusaus, O., MacFarlane, D.R., and Mohtadi, R.: Novel and versatile room temperature ionic liquids for energy storage. Energy Environ. Sci. 12, 566 (2019).
144.Oumellal, Y., Rougier, A., Nazri, G.A., Tarascon, J.M., and Aymard, L.: Metal hydrides for lithium-ion batteries. Nat. Mater. 7, 916 (2008).
145.Aymard, L., Oumellal, Y., and Bonnet, J.P.: Metal hydrides: An innovative and challenging conversion reaction anode for lithium-ion batteries. Beilstein J. Nanotechnol. 6, 1821 (2015).
146.McArthur, S.G., Geng, L.X., Guo, J.C., and Lavallo, V.: Cation reduction and comproportionation as novel strategies to produce high voltage, halide free, carborane based electrolytes for rechargeable Mg batteries. Inorg. Chem. Front. 2, 1101 (2015).
147.Cabana, J., Monconduit, L., Larcher, D., and Palacin, M.R.: Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22, E170 (2010).
148.Teprovich, J.A., Zhang, J., Colón-Mercado, H., Cuevas, F., Peters, B., Greenway, S., Zidan, R., and Latroche, M.: Li-driven electrochemical conversion reaction of AlH3, LiAlH4, and NaAlH4. J. Phys. Chem. C 119, 4666 (2015).
149.Cirrincione, L., Silvestri, L., Mallia, C., Stallworth, P.E., Greenbaum, S., Brutti, S., Panero, S., and Reale, P.: Investigation of the effects of mechanochemical treatment on NaAlH4 based anode materials for Li-ion batteries. J. Electrochem. Soc. 163, A2628 (2016).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed