Skip to main content
×
Home

Liquid–liquid extraction of oxide particles and application in supercapacitors

  • Ri Chen (a1), Mustafa S. Ata (a2), Xinya Zhao (a2), Ishwar Puri (a1) and Igor Zhitomirsky (a2)...
Abstract
Abstract

Many material manufacturing techniques require the use of nonaqueous colloidal suspensions, containing well dispersed oxide particles and various water insoluble functional components. We report an efficient method for the direct transfer of MnO2 and titania particles, synthesized in water, to an organic solvent through the interface of two immiscible liquids. Particle agglomeration during the drying stage was avoided, and stable suspensions of nonagglomerated particles in the organic phase were obtained. The benefits of this method were demonstrated by the fabrication of advanced composite MnO2-multiwalled carbon nanotube electrodes, containing a polymer binder, for electrochemical supercapacitors with high active mass loading and high active material to current collector mass ratio. The electrodes showed a capacitance of 5.13 F/cm2 and low impedance. High extraction efficiency from concentrated suspensions was achieved by the use of an advanced extractor, which allowed strong adsorption on the particles by the polydentate bonding. The extraction mechanism is discussed.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: zhitom@mcmaster.ca
Footnotes
Hide All

Contributing Editor: Eugene Medvedovski

Footnotes
References
Hide All
1. Otsuki A., Dodbiba G., Shibayama A., Sadaki J., Mei G., and Fujita T.: Separation of rare earth fluorescent powders by two-liquid flotation using organic solvents. Jpn. J. Appl. Phys. 47, 5093 (2008).
2. Wang L.P., Kanemitsu Y., Dodbiba G., Fujita T., Oya Y., and Yokoyama H.: Separation of ultrafine particles of alumina and zircon by liquid–liquid extraction using kerosene as the organic phase and sodium dodecylsulfate (SDS) as the surfactant collector for abrasive manufacturing waste recycling. Sep. Purif. Technol. 108, 133 (2013).
3. Cheng W. and Wang E.: Size-dependent phase transfer of gold nanoparticles from water into toluene by tetraoctylammonium cations: A wholly electrostatic interaction. J. Phys. Chem. B 108, 24 (2004).
4. Zambrana G., Medina R., Gutierrez G., and Vargas R.: Recovery of minus ten micron cassiterite by liquid–liquid extraction. Int. J. Miner. Process. 1, 335 (1974).
5. Hu B., Nakahiro Y., and Wakamatsu T.: The effect of organic solvents on the recovery of fine mineral particles by liquid–liquid extraction. Miner. Eng. 6, 731 (1993).
6. Gaponik N., Talapin D.V., Rogach A.L., Eychmuller A., and Weller H.: Efficient phase transfer of luminescent thiol-capped nanocrystals: From water to nonpolar organic solvents. Nano Lett. 2, 803 (2002).
7. Yao H., Momozawa O., Hamatani T., and Kimura K.: Phase transfer of gold nanoparticles across a water/oil interface by Stoichiometric ion-pair formation on particle surfaces. Bull. Chem. Soc. Jpn. 73, 2675 (2000).
8. Erler J., Machunsky S., Grimm P., Schmid H-J., and Peuker U.A.: Liquid–liquid phase transfer of magnetite nanoparticles-evaluation of surfactants. Powder Technol. 247, 265 (2013).
9. Karg M., Schelero N., Oppel C., Gradzielski M., Hellweg T., and von Klitzing R.: Versatile phase transfer of gold nanoparticles from aqueous media to different organic media. Chem.–Eur. J. 17, 4648 (2011).
10. Kumar A., Mukherjee P., Guha A., Adyantaya S., Mandale A., Kumar R., and Sastry M.: Amphoterization of colloidal gold particles by capping with valine molecules and their phase transfer from water to toluene by electrostatic coordination with fatty amine molecules. Langmuir 16, 9775 (2000).
11. Mayya K.S. and Caruso F.: Phase transfer of surface-modified gold nanoparticles by hydrophobization with alkylamines. Langmuir 19, 6987 (2003).
12. Kumar A., Joshi H., Pasricha R., Mandale A., and Sastry M.: Phase transfer of silver nanoparticles from aqueous to organic solutions using fatty amine molecules. J. Colloid Interface Sci. 264, 396 (2003).
13. Underwood S. and Mulvaney P.: Effect of the solution refractive index on the color of gold colloids. Langmuir 10, 3427 (1994).
14. Feng X., Ma H., Huang S., Pan W., Zhang X., Tian F., Gao C., Cheng Y., and Luo J.: Aqueous-organic phase-transfer of highly stable gold, silver, and platinum nanoparticles and new route for fabrication of gold nanofilms at the oil/water interface and on solid supports. J. Phys. Chem. B 110, 12311 (2006).
15. Casagrande T., Lawson G., Li H., Wei J., Adronov A., and Zhitomirsky I.: Electrodeposition of composite materials containing functionalized carbon nanotubes. Mater. Chem. Phys. 111, 42 (2008).
16. Su Y. and Zhitomirsky I.: Hybrid MnO2/carbon nanotube-VN/carbon nanotube supercapacitors. J. Power Sources 267, 235 (2014).
17. Pujari S.P., Scheres L., Marcelis A., and Zuilhof H.: Covalent surface modification of oxide surfaces. Angew. Chem., Int. Ed. 53, 6322 (2014).
18. Boissezon R., Muller J., Beaugeard V., Monge S., and Robin J-J.: Organophosphonates as anchoring agents onto metal oxide-based materials: Synthesis and applications. RSC Adv. 4, 35690 (2014).
19. Kalska-Szostko B., Rogowska M., and Satula D.: Organophosphorous functionalization of magnetite nanoparticles. Colloids Surf., B 111, 656 (2013).
20. Li F., Zhong H., Zhao G., Wang S., and Liu G.: Adsorption of α-hydroxyoctyl phosphonic acid to ilmenite/water interface and its application in flotation. Colloids Surf., A 490, 67 (2016).
21. Pauly C.l.S., Genix A-C., Alauzun J.G., Sztucki M., Oberdisse J., and Mutin P.H.: Surface modification of alumina-coated silica nanoparticles in aqueous sols with phosphonic acids and impact on nanoparticle interactions. Phys. Chem. Chem. Phys. 17, 19173 (2015).
22. Thomas G., Demoisson F., Boudon J., and Millot N.: Efficient functionalization of magnetite nanoparticles with phosphonate using a one-step continuous hydrothermal process. Dalton Trans. 45, 10821 (2016).
23. Kar P., Pandey A., Greer J.J., and Shankar K.: Ultrahigh sensitivity assays for human cardiac troponin I using TiO2 nanotube arrays. Lab Chip 12, 821 (2012).
24. Ata M., Liu Y., and Zhitomirsky I.: A review of new methods of surface chemical modification, dispersion and electrophoretic deposition of metal oxide particles. RSC Adv. 4, 22716 (2014).
25. Subramanian V., Zhu H., and Wei B.: Alcohol-assisted room temperature synthesis of different nanostructured manganese oxides and their pseudocapacitance properties in neutral electrolyte. Chem. Phys. Lett. 453, 242 (2008).
26. Cheong M. and Zhitomirsky I.: Electrophoretic deposition of manganese oxide films. Surf. Eng. 25, 346 (2009).
27. Li J. and Zhitomirsky I.: Electrophoretic deposition of manganese oxide nanofibers. Mater. Chem. Phys. 112, 525 (2008).
28. Taberna P., Simon P., and Fauvarque J.F.: Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J. Electrochem. Soc. 150, A292 (2003).
29. Machunsky S. and Peuker U.A.: Liquid–liquid interfacial transport of nanoparticles. Phys. Separ. Sci. Eng. 2007, 34832 (2007).
30. Giza M., Thissen P., and Grundmeier G.: Adsorption kinetics of organophosphonic acids on plasma-modified oxide-covered aluminum surfaces. Langmuir 24, 8688 (2008).
31. Dzunuzovic E.S., Dzunuzovic J.V., Marinkovic A.D., Marinovic-Cincovic M.T., Jeremic K.B., and Nedeljkovic J.M.: Influence of surface modified TiO2 nanoparticles by gallates on the properties of PMMA/TiO2 nanocomposites. Eur. Polym. J. 48, 1385 (2012).
32. Zhitomirsky I. and Petric A.: Electrophoretic deposition of ceramic materials for fuel cell applications. J. Eur. Ceram. Soc. 20, 2055 (2000).
33. Zhitomirsky I. and Petric A.: Electrophoretic deposition of electrolyte materials for solid oxide fuel cells. J. Mater. Sci. 39, 825 (2004).
34. Toor A., Feng T., and Russell T.P.: Self-assembly of nanomaterials at fluid interfaces. Eur. Phys. J. E 39, 1 (2016).
35. Andala D.M., Shin S.H.R., Lee H-Y., and Bishop K.J.: Templated synthesis of amphiphilic nanoparticles at the liquid–liquid interface. ACS Nano 6, 1044 (2012).
36. Lee W.P., Chen H., Dryfe R., and Ding Y.: Kinetics of nanoparticle synthesis by liquid–liquid interfacial reaction. Colloids Surfaces A. 343, 3 (2009).
37. Liang X., Xing L., Xiang J., Zhang F., Jiao J., Cui L., Song B., Chen S., Zhao C., and Sai H.: The role of the liquid–liquid interface in the synthesis of nonequilibrium crystalline Wurtzite ZnS at room temperature. Cryst. Growth Des. 12, 1173 (2012).
38. Li Y., Wu K., and Zhitomirsky I.: Electrodeposition of composite zinc oxide-chitosan films. Colloids Surf., A 356, 63 (2010).
39. Li J. and Zhitomirsky I.: Cathodic electrophoretic deposition of manganese dioxide films. Colloids Surf., A 348, 248 (2009).
40. Jacob G.M., Yang Q.M., and Zhitomirsky I.: Electrodes for electrochemical supercapacitors. Mater. Manuf. Process. 24, 1359 (2009).
41. Devaraj S. and Munichandraiah N.: High capacitance of electrodeposited MnO2 by the effect of a surface-active agent. Electrochem. Solid-State Lett. 8, A373 (2005).
42. Athouel L., Moser F., Dugas R., Crosnier O., Bélanger D., and Brousse T.: Variation of the MnO2 birnessite structure upon charge/discharge in an electrochemical supercapacitor electrode in aqueous Na2SO4 electrolyte. J. Phys. Chem. C 112, 7270 (2008).
43. Bélanger D., Brousse T., and Long J.W.: Manganese oxides: Battery materials make the leap to electrochemical capacitors. Electrochem. Soc. Interf. 17, 49 (2008).
44. Jiang R., Huang T., Tang Y., Liu J., Xue L., Zhuang J., and Yu A.: Factors influencing MnO2/multi-walled carbon nanotubes composite’s electrochemical performance as supercapacitor electrode. Electrochim. Acta 54, 7173 (2009).
45. Toupin M., Brousse T., and Belanger D.: Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 16, 3184 (2004).
46. Nam K-W. and Kim K-B.: Manganese oxide film electrodes prepared by electrostatic spray deposition for electrochemical capacitors. J. Electrochem. Soc. 153, A81 (2006).
47. Xia H. and Huo C.: Electrochemical properties of MnO2/CNT nanocomposite in neutral aqueous electrolyte as cathode material for asymmetric supercapacitors. Int. J. Smart Nano Mater. 2, 283 (2011).
48. Jacob G.M. and Zhitomirsky I.: Microstructure and properties of manganese dioxide films prepared by electrodeposition. Appl. Surf. Sci. 254, 6671 (2008).
49. Li J. and Zhitomirsky I.: Electrophoretic deposition of manganese dioxide-carbon nanotube composites. J. Mater. Process. Technol. 209, 3452 (2009).
50. Wang Y., Liu Y., and Zhitomirsky I.: Surface modification of MnO2 and carbon nanotubes using organic dyes for nanotechnology of electrochemical supercapacitors. J. Mater. Chem. A 1, 12519 (2013).
51. Zhu Y., Shi K., and Zhitomirsky I.: Anionic dopant-dispersants for synthesis of polypyrrole coated carbon nanotubes and fabrication of supercapacitor electrodes with high active mass loading. J. Mater. Chem. A 2, 14666 (2014).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 6
Total number of PDF views: 76 *
Loading metrics...

Abstract views

Total abstract views: 302 *
Loading metrics...

* Views captured on Cambridge Core between 28th March 2017 - 17th November 2017. This data will be updated every 24 hours.