Skip to main content
×
Home
    • Aa
    • Aa

Local structural distortion and interrelated phonon mode studies in yttrium chromite

  • Venkateswara Rao Mannepalli (a1), Rajamani Raghunathan (a2), Ranjith Ramadurai (a1), Adrian David (a3) and Wilfrid Prellier (a3)...
Abstract
Abstract

YCrO3 (YCO) perovskite has been originally reported to be a biferroic with antiferromagnetic and ferroelectric (FE) properties, in which the origin of FE in YCO remains ambiguous. However, further studies reveal the presence of a global orthorhombic Pnma structure with a local structural heterogeneity. In this study, we discuss the high temperature phonon modes and their inter-relation to local structural distortions in YCO perovskite through Raman spectroscopy experiments and density functional theory (DFT) calculations. We observe that the Raman active B3g(3) out of phase scissor mode (SM) disappears above the dielectric transition temperature (T c) commensurate with the local structural distortions. DFT calculations show that the transformation of a room temperature Y-cation distorted orthorhombic structure to a perfect orthorhombic structure above the dielectric transition temperature in which the Y cation is undisplaced could lead to the conversion of SM with symmetry B3g to Raman inactive B1u mode.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: ranjith@iith.ac.in
Footnotes
Hide All

Contributing Editor: Scott T. Misture

Footnotes
References
Hide All
1. CariniG.F.II, AndersonH.U., SparlinD.M., and NasrallahM.M.: Electrical conductivity, Seebeck coefficient and defect chemistry of Ca-doped YCrO3 . Solid State Ionics 49, 233 (1991).
2. SfeirJ.: LaCrO3-based anodes: Stability considerations. J. Power Sources 118, 276 (2003).
3. MinhN.Q.: Ceramic fuel cells. J. Am. Ceram. Soc. 76, 563 (1993).
4. NivotC., BernardJ., LelievreC., HaussomeJ-M., and HouivetD.: Moisture sensitivity of YCr1−x Mn x O3 . Ceram. Interfaces 36, 929 (2010).
5. Ngueteu KamloA., BernardJ., LelievreC., and HouivetD.: Synthesis and NTC properties of YCr1−x Mn x O3 ceramics sintered under nitrogen atmosphere. J. Eur. Ceram. Soc. 31, 1457 (2011).
6. SerraoC.R., KunduA.K., KrupanidhiS.B., WaghmareU.V., and RaoC.N.R.: Biferroic YCrO3 . Phys. Rev. B: Condens. Matter Mater. Phys. 72, 220101 (2005).
7. BhadramV.S., RajeswaranB., SundaresanA., and NarayanaC.: Spin phonon coupling in multiferroic RCrO3 (R = Y, Lu, Gd, Eu, Sm): A Raman study. Europhys. Lett. 101, 17008 (2013).
8. RameshaK., LlobetA., ProffenT., SerraoC.R., and RaoC.N.R.: Observation of local non-centrosymmetry in weakly biferroic YCrO3 . J. Phys.: Condens. Matter 19, 102202 (2007).
9. RajeswaranB., KhomskiiD.I., ZvezdinA.K., RaoC.N.R., and SundaresanA.: Field-induced polar order at Neel temperature of chromium in rare earth orthochromites: Interplay of rare earth and Cr magnetism. Phys. Rev. B: Condens. Matter Mater. Phys. 86, 214409 (2012).
10. SharmaY., SahooS., PerezW., MukherjeeS., GuptaR., GargA., ChatterjeeR., and KatiyarR.S.: Phonons and magnetic excitation correlations in weak ferromagnetic YCrO3 . J. Appl. Phys. 115, 183907 (2014).
11. TiwariB., DixitA., NaikR., LawesG., and RaoM.S.R.: Dielectric and optical phonon anomalies near antiferromagnetic ordering in LaCrO3: A possible near room temperature magneto dielectric system. Appl. Phys. Lett. 103, 152906 (2013).
12. SeoJ-D. and SonJ.Y.: Room temperature ferroelectricity of YCrO3 thin films on Rh single crystals. J. Cryst. Growth 375, 53 (2013).
13. DuranA., Arevalo-LopezA.M., Castillo-MartinezE., Garcia-GuaderramaM., MoranE., CruzM.P., FernandezF., and Alario-FrancoM.A.: Magneto-thermal and dielectric properties of biferroic YCrO3 prepared by combustion synthesis. J. Solid State Chem. 183, 1863 (2010).
14. NiitakaS., AzumaM., TakanoM., NishiboriE., TakataM., and SakataM.: Crystal structure and dielectric and magnetic properties of BiCrO3 as a ferroelectromagnet. Solid State Ionics 172, 557 (2004).
15. AlvarezG., MontielH., CruzM.P., DuránA.C., and ZamoranoR.: Resonant and non-resonant microwave absorption in the magnetoelectric YCrO3 through ferro-paraelectric transition. J. Alloys Compd. 509, L331 (2011).
16. AlvarezG., MontielH., CruzM.P., DuránA.C., and ZamoranoR.: Weak ferromagnetism in the magnetoelectric YCrO3 detected by microwave power absorption measurements. Solid State Commun. 150, 1597 (2010).
17. SahaS., ChandaS., DuttaA., and SinhaT.P.: Dielectric relaxation and phonon modes of NdCrO3 nanostructure. J. Sol-Gel Sci. Technol. 69, 553 (2013).
18. Rodrigues-CarvajalJ.: An introduction to the program fullprof rietveld refinement and pattern matching analysis. (Laboratoire Leon Brillioun CEA-CNRS, France, 2000).
19. WeberM.C., KreiselJ., ThomasP.A., NewtonM., SardarK., and WaltonR.I.: Phonon Raman scattering of RCrO3 pervoskites (R = Y, La, Pr, Sm, Gd, Dy, Ho, Yb, Lu). Phys. Rev. B: Condens. Matter Mater. Phys. 85, 054303 (2012).
20. ZhouJ-S., AlonsoJ.A., PomjakushinV., GoodenoughJ.B., RenY., YanJ-Q., and ChengJ-G.: Intrinsic structural distortion and superexchange interaction in the orthorhombic rare-earth pervoskites RCrO3 . Phys. Rev. B: Condens. Matter Mater. Phys. 81, 214115 (2010).
21. WojdyrM.: Fityk: A general-purpose peak fitting program. J. Appl. Crystallogr. 43, 1126 (2010).
22. UdagawaM., KohnK., KoshizukaN., TsushimaT., and TsushimaK.: Influence of magnetic ordering on the phonon Raman spectra in YCrO3 and GdCrO3 . Solid State Commun. 16, 779 (1975).
23. TodorovN.D., AbrashevM.V., IvanovV.G., TsutsumanovaG.G., MarinovaV., WangY-Q., and IlievM.N.: Comparative Raman study of isostructural YCrO3 and YMnO3: Effects of structural distortions and twinning. Phys. Rev. B: Condens. Matter Mater. Phys. 83, 224303 (2011).
24. AbrashevM.V., BäckströmJ., BörjessonL., PopovV.N., ChakalovR.A., KolevN., MengR-L., and IlievM.: Raman spectroscopy of CaMnO3: Mode assignment and relationship between Raman line intensities and structural distortions. Phys. Rev. B: Condens. Matter Mater. Phys. 65, 184301 (2002).
25. CatalanG., O’NeillD., BowmanR.M., and GreggJ.M.: Relaxor features in ferroelectric superlattices: A Maxwell–Wagner approach. Appl. Phys. Lett. 77, 3078 (2000).
26. GiannozziP., BaroniS., BoniniN., CalandraM., CarR., CavazzoniC., CeresoliD., ChiarottiG.L., CococcioniM., DaboI., Dal CorsoA., de GironcoliS., FabrisS., FratesiG., GebauerR., GerstmannU., GougoussisC., KokaljA., LazzeriM., Martin-SamosL., MarzariN., MauriF., MazzarelloR., PaoliniS., PasquarelloA., PaulattoL., SbracciaC., ScandoloS., SclauzeroG., SeitsonenA.P., SmogunovA., UmariP., and WentzcovitchR.M.: Quantum ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21, 395502 (2009).
27. RayN. and WaghmareU.V.: Coupling between magnetic ordering and structural instabilities in pervoskite biferroics: A first-principles study. Phys. Rev. B: Condens. Matter Mater. Phys. 77, 134112 (2008).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Type Description Title
WORD
Supplementary Materials

Mannepalli supplementary material
Table S1

 Word (30 KB)
30 KB

Metrics

Full text views

Total number of HTML views: 7
Total number of PDF views: 38 *
Loading metrics...

Abstract views

Total abstract views: 294 *
Loading metrics...

* Views captured on Cambridge Core between 30th January 2017 - 20th October 2017. This data will be updated every 24 hours.