Skip to main content Accessibility help
×
Home

Magnetization processes in electrodeposited NiFe/Cu multilayered nanowires

  • Spyros Krimpalis (a1), Oana-Georgiana Dragos (a2), Anca-Eugenia Moga (a2), Nicoleta Lupu (a2) and Horia Chiriac (a2)...

Abstract

The effect of the magnetic anisotropy and the dipolar interactions between NiFe magnetic layers and between nanowires on the magnetic properties of NiFe/Cu multilayered nanowire arrays electrodeposited into the nanopores of anodic aluminium oxide (AAO) templates with diameters of 35 and 200 nm has been studied. The variation of the aspect ratio (thickness/diameter) between the NiFe magnetic and Cu nonmagnetic layers influences the effective anisotropy field. The correlation between the measured hysteresis loops, with the applied field parallel and perpendicular to the multilayered nanowires’ axis, and the calculated effective anisotropy field, Heff, and saturation field, Hsat, shows that it is possible to tune the orientation of the magnetization axis with high accuracy. Two formulas, which include both the intra- and internanowire interactions, were proposed to calculate the saturation fields of multilayered nanowire arrays for the applied field parallel and perpendicular to the nanowires’ axis.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: skrimpalis@phys-iasi.ro

References

Hide All
1.Baibich, M.N., Broto, J.M., Fert, A., and Van Dau Nguyen, F., Petroff, E., Etienne, P., Greuzet, G., Friederich, A., and Chazelas, J.: Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472 (1988).
2.Parkin, S.S.P., Jiang, X., Kaiser, C., Panchula, A., Roche, K., and Samant, M.: Magnetically engineered spintronic sensors and memory. Proc. IEEE 91, 661 (2003).
3.Ktena, A. and Hristoforou, E.: Magnetic effects in sensing applications, in Encyclopedia of Sensors, edited by Grimes, C. (American Scientific Publishers, Valencia, CA, 2006) pp. 821.
4.Hristoforou, E.: Magnetic effects in physical sensor design. J. Optoelectron. Adv. Mater. 4, 245 (2002).
5.Pratt, W.P., Lee, S.F., Slaughter, J.M., Schroeder, P.A., and Bass, J.: Perpendicular giant magnetoresistances of Ag/Co multilayers. Phys. Rev. Lett. 66, 3060 (1991).
6.Dubois, S., Marchal, C., Beuken, J.M., Piraux, L., Duvail, J.L., Fert, A., George, J.M., and Maurice, J.L.: Perpendicular giant magnetoresistance of NiFe/Cu multilayered nanowires. Appl. Phys. Lett. 70, 396 (1997).
7.Piraux, L., Dubois, S., Duvail, J.L., Ounadjela, K., and Fert, A.: Arrays of nanowires of magnetic metals and multilayers: Perpendicular GMR and magnetic properties. J. Magn. Magn. Mater. 175, 127 (1997).
8.Berger, L.: Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353 (1996).
9.Slonczewski, J.C.: Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1 (1996).
10.Katine, J.A., Albert, F.J., Buhrman, R.A., Myers, E.B., and Ralph, D.C.: Current-driven magnetization reversal and spin-wave excitation in Co/Cu/Co pillars. Phys. Rev. Lett. 84, 3149 (2000).
11.Wegrowe, J.E., Hoffer, X., Guittienne, Ph., Fabian, A., Gravier, L., Wade, T., and Ansermet, J.Ph.: Spin-polarized current induced magnetization switch: Is the modulus of the magnetic layer conserved? J. Appl. Phys. 91, 6806 (2002).
12.Kiselev, S.I., Sankey, J.C., Krivorotov, I.N., Emley, N.C., Schoelkopf, R.J., Buhrman, R.A., and Ralph, D.C.: Microwave oscillation of a nanomagnet driven by a spin-polarized current. Nature 425, 380 (2003).
13.Cheng, G.S., Zhang, L.D., Chen, S.H., Li, Y., Zhu, X.G., Zhu, Y., Fei, G.T., and Mao, Y.Q.: Ordered nanostructure of single-crystalline GaN nanowires in a honeycomb structure of anodic alumina. J. Mater. Res. 15, 347 (2000).
14.Wu, Y. and Yang, P.: Direct observation of vapor-liquid-solid nanowire growth. J. Am. Chem. Soc. 123, 3165 (2001).
15.Contreras, A.M., Grunes, J., Yan, X.M., Liddle, A., and Somorjai, G.A.: Fabrication of platinum nanoparticles and nanowires by electron-beam lithography (EBL) and nanoimprint lithography (NIL): Comparison of ethylene hydrogenation kinetics. Catal. Lett. 100, 115 (2005).
16.Heydon, G.P., Hoon, S.R., Farley, A.N., Tomlinson, S.L., Valera, M.S., Attenborough, K., and Schwarzacher, W.: Magnetic properties of electrodeposited nanowires. J. Phys. D: Appl. Phys. 30, 1083 (1997).
17.Heinen, J., Boulle, O., Rousseau, K., Malinowski, G., Kläui, M., Swagten, H.J.M., Koopmans, B., Ulysse, C., and Faini, G.: Current-induced domain wall motion in Co/Pt nanowires: Separating spin torque and Oersted-field effects. Appl. Phys. Lett. 96, 202510 (2010).
18.Sun, L., Hao, Y., Chien, C.L., and Searson, P.C.: Tuning the properties of magnetic nanowires. IBM J. Res. Dev. 49, 79 (2005).
19.Li, X.P., Seet, H.L., Fan, J., and Yi, J.B.: Electrodeposition and characteristics of Ni80Fe20/Cu composite wires. J. Magn. Magn. Mater. 304, 111 (2006).
20.Seet, H.L., Li, X.P., Zhao, Z.J., Wong, L.C., Zheng, H.M., and Lee, K.S.: Current density effect on magnetic properties of nanocrystalline electroplated Ni80Fe20/Cu composite wires. J. Magn. Magn. Mater. 302, 113 (2006).
21.Strijkers, G.J., Dalderop, J.H.J., Broeksteeg, M.A.A., Swagten, H.J.M., and de Jonge, W.J.M.: Structure and magnetization of arrays of electrodeposited Co wires in anodic alumina. J. Appl. Phys. 86, 5141 (1999).
22.Sampaio, L.C., Sinnecker, E.H.C.P., Cernicchiaro, G.R.C., Knobel, M., Vazquez, M., and Velazquez, J.: Magnetic microwires as macrospins in a long-range dipole-dipole interaction. Phys. Rev. B 61, 8976 (2000).
23.Tang, X.T., Wang, G.C., and Shima, M.: Magnetic layer thickness dependence of magnetization reversal in electrodeposited CoNi/Cu multilayer nanowires. J. Magn. Magn. Mater. 309, 188 (2007).
24.Encinas-Oropesa, A., Demand, M., Piraux, L., Huynen, I., and Ebels, U.: Dipolar interactions in arrays of nickel nanowires studied by ferromagnetic resonance. Phys. Rev. B 63, 104415 (2001).
25.Zhan, Q.F., Gao, J.H., Liang, Y.Q., Di, N.L., and Cheng, Z.H.: Dipolar interactions in arrays of iron nanowires studied by Mössbauer spectroscopy. Phys. Rev. B 72, 024428 (2005).
26.Clime, L., Ciureanu, P., and Yelon, A.: Magnetostatic interaction in dense nanowires arrays. J. Magn. Magn. Mater. 297, 60 (2006).
27.Valazquez, J., Pirota, K.R., and Vazquez, M.: About the dipolar approach in magnetostatically coupled bistable magnetic micro and nanowires. IEEE Trans. Magn. 39, 3049 (2003).
28.De La Torre Medina, J., Darques, M., Blon, T., and Piraux, L.: Effects of layering on the magnetostatic interactions in microstructures of CoxCu1-x/Cu nanowires. Phys. Rev. B 77, 014417 (2008).
29.Carignan, L.P., Lacroix, C., Ouimet, A., Ciureanu, M., Yelon, A., and Menard, D.: Magnetic anisotropy in arrays of Ni, CoFeB and Ni/Cu nanowires. J. Appl. Phys. 102, 023905 (2007).
30.Clime, L., Zhao, S.Y., Chen, P., Normandin, F., Roberge, H., and Veres, T.: The interaction field in arrays of ferromagnetic barcode nanowires. Nanotechnology 18, 435709 (2007).
31.Chiriac, H., Ovari, T.A., and Pascariu, P.: Phenomenological model for the simulation of hysteresis loops in NiFe/Cu multilayered nanowires. J. Appl. Phys. 103, 07D919 (2008).
32.Ruderman, M.A. and Kittel, C.: Indirect exchange coupling of nuclear magnetic moments by conduction electrons. Phys. Rev. 96, 99 (1954).
33.Kasuya, T.: A theory of metallic ferro- and antiferromagnetism on Zener’s model. Prog. Theor. Phys. 16, 45 (1956).
34.Yosida, K.: Magnetic properties of Cu-Mn alloys. Phys. Rev. 106, 893 (1957).
35.Chen, M., Chien, C.-L., and Searson, P.C.: Potential modulated multilayer deposition of multisegment Cu/Ni nanowires with tunable magnetic properties. Chem. Mater. 18, 1595 (2006).
36.Wong, J., Greene, P., Dumas, R.K., and Liu, K.: Probing magnetic configurations in Co/Cu multilayered nanowires. Appl. Phys. Lett. 94, 032504 (2009).
37.Mieszawska, A.J., Jalilian, R., Sumanasekera, G.U., and Zamborini, F.P.: The synthesis and fabrication of one-dimensional nanoscale heterojunctions. Small 3, 722 (2007).
38.Lee, W., Scholz, R., Nielsch, K., and Gosele, U.: A template-based electrochemical method for the synthesis of multisegmented metallic nanotubes. Angew. Chem. Int. Ed. 44, 6050 (2005).
39.Nielsch, K., Müller, F., Li, A.P., and Gösele, U.: Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition. Adv. Mater. 12, 582 (2000).
40.Chiriac, H., Dragos, O.G., Grigoras, M., Ababei, G., and Lupu, N.: Magnetotransport phenomena in [NiFe/Cu] magnetic multilayered nanowires. IEEE Trans. Magn. 45, 4077 (2009).
41.Dubois, S., Colin, J., Duvail, J.L., and Piraux, L.: Evidence of strong magnetoelastic effects in Ni nanowires embedded in polycarbonate membranes. Phys. Rev. B 61, 21 (2000).
42.Lee, W., Ji, R., Gosele, U., and Nielsch, K.: Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nat. Mater. 5, 741 (2006).
43.Krimpalis, S., Dragos, O.G., Grigoras, M., Lupu, N., and Chiriac, H.: Magnetoresistance and spin transfer torque in electrodeposited NiFe/Cu multilayered nanowires. J. Adv. Res. Phys. 1, 021005 (2010).
44.Rheem, Y., Yoo, B.-Y., Koo, B.K., Beyermann, W.P., and Myung, N.V.: Synthesis and magnetotransport studies of single nickel-rich NiFe nanowire. J. Phys. D: Appl. Phys. 40, 7267 (2007).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed