Skip to main content
×
×
Home

The manifestation of oxygen contamination in ErD2 thin films

  • Chad M. Parish (a1), Clark S. Snow and Luke N. Brewer (a1)
Abstract

Erbium dihydride Er(H,D,T)2 is a fluorite structure rare-earth dihydride useful for the storage of hydrogen isotopes in the solid state. However, thermodynamic predictions indicate that erbium oxide formation will proceed readily during processing, which may detrimentally contaminate Er(H,D,T)2 films. In this work, transmission electron microscopy (TEM) techniques including energy-dispersive x-ray spectroscopy, energy-filtered TEM, selected area electron diffraction, and high-resolution TEM are used to examine the manifestation of oxygen contamination in ErD2 thin films. An oxide layer ∼30–130 nm thick was found on top of the underlying ErD2 film, and showed a cube-on-cube epitaxial orientation to the underlying ErD2. Electron diffraction confirmed the oxide layer to be Er2O3. While the majority of the film was observed to have the expected fluorite structure for ErD2, secondary diffraction spots suggested the possibility of either nanoscale oxide inclusions or hydrogen ordering. In situ heating experiments combined with electron diffraction ruled out the possibility of hydrogen ordering, so epitaxial oxide nanoinclusions within the ErD2 matrix are hypothesized. TEM techniques were applied to examine this oxide nanoinclusion hypothesis.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: cmparis@sandia.gov
References
Hide All
1.Sakintuna, B., Lamari-Darkrim, F., and Hirscher, M.: Metal hydride materials for solid hydrogen storage: A review. Int. J. Hydro-gen Enerev 32, 1121 (2007).
2.Lynch, F.E.: Metal hydride practical applications. J. Less-Common Met. 172–174, 943 (1991).
3.Crabtree, G.W. and Dresselhaus, M.S.: The hydrogen fuel alternative. MRS Bull. 33, 421 (2008).
4.Grochala, W. and Edwards, P.P.: Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen. Chem. Rev. 104, 1283 (2004).
5.Chen, P. and Zhu, M.: Recent progress in hydrogen storage. Mater. Today 11, 36 (2008).
6.Provo, J.L.: Effects of vacuum processing erbium dideuteride-ditritide films deposited on chromium underlays on copper substrates. J. Vac. Sci. Technol. 16, 230 (1979).
7.Dow, P.A., Briers, G.W., Dewey, M.A.P., and Stark, D.S.: Structure of erbium deuteride targets for neutron generators. Nucl. Instrum. Methods 60, 293 (1968).
8.Bach, H.T., Steinkruger, F.J., Chamberlin, W.S., and Walthers, C.R.: Quantitative analysis of deuterium and tritium in erbium hydride films of neutron tube targets. J. Vac. Sci. Technol., B 22. 1738 (2004).
9.Chichester, D.L. and Simpson, J.D.: Compact accelerator neutron generators. Industr. Physicist 9, 22 (20032004).
10.Gabis, I., Evard, E., Voyt, A., Chernov, I., and Zaika, Y.: Kinetics of decomposition of erbium hydride. J. Alloys Compd. 356, 353 (2003).
11.Fernandez, E.J. and Holloway, D.M.: Oxidation studies of erbium hydride system. J. Vac. Sci. Technol. 11, 612 (1974).
12.Mitchell, D.J. and Patrick, R.C.: Temperature dependence of helium release from erbium tritide films. J. Vac. Sci. Technol. 19, 236 (1981).
13.Tewell, C.R. and King, S.H.: Observation of metastable erbium trihydride. Appl. Surf. Sci. 253, 2597 (2006).
14.Curzon, A.E. and Chlebek, H.G.: Observation of face centered cubic erbium in thin-films and its oxidation. J. Less-Common Met. 27, 411 (1972).
15.Rahman Khan, M.S.: Epitaxial growth of erbium dihydride films. Thin Solid Films 113, 207 (1984).
16.Rahman Khan, M.S. and Miller, R.F.: The growth and structure of epitaxial films of the rare-earth dihydrides. J. Phys. D: Appl. Phys. 12, 271 (1979).
17.Blewer, R.S. and Maurin, J.K.: Dimensional expansion and surface microstructure in helium-implanted erbium and erbium-hydride films. J. Nucl. Mater. 44, 260 (1972).
18.Guthrie, J.W., Beavis, L.C., Begeal, D.R., and Perkins, W.G.: Properties of hydride-forming metals and of multilayer hydrogen permeation barriers. J. Nucl. Mater. 53, 313 (1974).
19.Gu, E.D., Savaloni, H., Player, M.A., and Marr, G.V.: Characterization of evaporated erbium films at various stages of growth. J. Phys. Chem. Solids 53, 127 (1992).
20.Rahman Khan, M.S.: Changes produced in the electrical resistivity of ErH2 thin films when converted to ErH3 due to hydrogen treatment. Appl. Phys. A 35, 263 (1984).
21.Knapp, J.A. and Browning, J.F.: Nanoindentation characterization of ErT2 thin films. J. Nucl. Mater. 350, 147 (2006).
22.Snow, C.S., Brewer, L.N., Gelles, D.S., Rodriguez, M.A., Kotula, P.G., Mangan, M.A., and Browning, J.F.: Helium release and microstructural changes in Er(D,T)2−x3Hex films. J. Nucl. Mater. 374, 147 (2007).
23.Vajda, P.: Hydrogen ordering and metal-semiconductor transitions in superstoichiometric rare earth dihydrides. J. Alloys Compd. 231, 170 (1995).
24.DeHoff, R.T.: Thermodynamics in Materials Science (McGraw-Hill, New York, 1993).
25.Holloway, D.M.: The quantitative determination of surface oxide thickness on deposited metal films by combination auger spectroscopy and inert gas ion bombardment. Appl. Spectrosc. 27, 95 (1973).
26.Cowgill, D.F.: Helium nano-bubble evolution in aging metal tritides. Fus. Sci. Technol. 48, 539 (2005).
27.Fromm, E. and Uchida, H.: Effect of oxygen sorption layers on the kinetics of hydrogen absorption by tantalum at 77–700 K. J. Less-Common Met. 66, 77 (1979).
28.Wenzl, H., Klatt, K-H., Meuffels, P., and Papathanassopoulos, K.: Hydrogen storage in thin film metal hydrides. J. Less-Common Met. 89, 489 (1983).
29.Jain, I.P., Devi, B., and Williamson, A.: Hydrogen in UHV deposited FeTi thin films. Int. J. Hydrogen Energy 26, 1183 (2001).
30.Venhaus, T. and Poths, J.: Observations on He-3 release from ErT2 films. Fus. Sci. Technol. 48, 601 (2005).
31.Brydson, R.: Electron Energy Loss Spectroscopy (Royal Microscopical Society Handbook #48) (BIOS Scientific Publishers, Oxford, 2001).
32.Kothleitner, G. and Hofer, F.: Optimization of the signal to noise ratio in EFTEM elemental maps with regard to different ioniza-tion edge types. Micron 29, 349 (1998).
33.Mayer, J.: Nanoscale analysis by energy-filtering TEM, in Advances in Imaging and Electron Physics, Vol. 123, edited by Hawkes, P.W. (Academic Press, Amsterdam, 2002), p. 399.
34.Thomas, P.J. and Midgley, P.A.: An introduction to energy-filtered transmission electron microscopy. Top. Catal. 21, 109 (2002).
35.Williams, D.B. and Carter, C.B.: Transmission Electron Microscopy (Plenum, New York, 1996).
36.Jain, I.P., Vijay, Y.K., Malhotra, L.K., and Uppadhyay, K.S.: Hydrogen storage in thin-film metal hydride-A review. Int. J. Hydrogen Energy 13, 15 (1988).
37.Grier, E.J., Petford-Long, A.K., and Ward, R.C.C.: Determination of hydrogen ordering within the ss-RH2 + x phase (R = Ho, Y) using electron diffraction techniques. J. Appl. Crystallogr. 33, 1246 (2000).
38.Goldstone, J.A., Eckert, J., Richards, P.M., and Venturini, E.L.: Temperature and concentration-dependence of hydrogen site occupancy in several rare-earth dihydrides. Phys. B + C (Amsterdam) 136, 183 (1986).
39.Vajda, P., Daou, J.N., and Burger, J.P.: Observations of magnetic and structural ordering in TbH2+x compounds through electrical-resistivity measurements. Phys. Rev. B 36, 8669 (1987).
40.Sun, S.N., Wang, Y., and Chou, M.Y.: First principles study of hydrogen ordering in b-YH2+x. Phys. Rev. B 49, 6481 (1994).
41.Udovic, T.J., Rush, J.J., and Anderson, I.S.: Neutron spectroscopic evidence of concentration-dependent hydrogen ordering in the octahedral sublattice of b-TbH2+x. Phys. Rev. B 50, 7144 (1994).
42.Vajda, P. and Daou, J.N.: Magnetic and metal-semiconductor transitions in ordered and disordered ErH(D)(2+x). Phys. Rev. B 49, 3275 (1994).
43.Udovic, T.J., Rush, J.J., and Anderson, I.S.: Neutron spectroscopic comparison of b-phase rare-earth hydrides. J. Alloys Compd. 231, 138 (1995).
44.Ratishvili, I.G. and Vajda, P.: Hydrogen ordering in superstoichiometric rare-earth hydrides for a system with an energy-constants ratio p = V2/V1 < 1: LaH2+x. Phys. Rev. B 53, 581 (1996).
45.Udovic, T.J., Huang, Q., and Rush, J.J.: Hydrogen and deuterium site separation in fcc-based mixed-isotope rare-earth hydrides. Phys. Rev. B 61, 6611 (2000).
46.De Graef, M.: Introduction to Conventional Transmission Electron Microscopy (Cambridge University Press, Cambridge, 2003).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed